Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
01d04be6
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
01d04be6
编写于
1月 26, 2022
作者:
L
Li Min
提交者:
GitHub
1月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize layer norm forward when cols is 1024. (#39167)
* Optimize layer_norm fwd when cols is 1024.
上级
6efb9f59
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
395 addition
and
18 deletion
+395
-18
paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h
...d/operators/fused/fused_layernorm_residual_dropout_bias.h
+223
-7
paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias_test.cu
...ators/fused/fused_layernorm_residual_dropout_bias_test.cu
+14
-8
paddle/fluid/operators/layer_norm_kernel.cu.h
paddle/fluid/operators/layer_norm_kernel.cu.h
+115
-0
paddle/fluid/operators/layer_norm_op.cu
paddle/fluid/operators/layer_norm_op.cu
+41
-3
python/paddle/fluid/tests/unittests/test_layer_norm_op.py
python/paddle/fluid/tests/unittests/test_layer_norm_op.py
+2
-0
未找到文件。
paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h
浏览文件 @
01d04be6
...
...
@@ -19,6 +19,8 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
#define LN_NUM_COLS 1024
template
<
typename
T
>
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
template
<
typename
T
>
...
...
@@ -153,6 +155,191 @@ __global__ void FusedLayernormResidualDropoutBias(
invvar
);
}
/*
* @brief layernorm(residual + dropout(x));
* Conditions:
* (1) The number of cols is 1024;
* (2) layer_norm scale and bias is not null;
* (3) linear bias is null;
* @param
* rows: batch_size * seq_len
* cols: 1024
* x_: [rows, cols], inputs
* residual_:[rows, cols]
* gamma_: [cols]: layernorm scale, not null
* beta_: [cols], layernorm bias, not null
* mask_out_: [rows, cols], dropout result
* residual_out_: [rows, cols], residual + dropout(src)
* y_: [rows, cols], layernorm result
* mean_out_: [rows]: layernorm means
* var_out_: [rows]: layernorm vars
*/
template
<
typename
T
,
typename
U
,
typename
ScaleT
=
U
,
typename
MaskType
=
uint8_t
,
int
VecSize
=
8
,
int
WARPS_M
=
4
,
int
WARPS_N
=
1
,
int
BYTES_PER_LDG
=
16
,
int
ELTS_PER_ROW
=
1024
,
int
THREADS_PER_WARP
=
32
,
int
THREADS_PER_ROW
=
WARPS_N
*
THREADS_PER_WARP
,
int
THREADS_PER_CTA
=
WARPS_M
*
THREADS_PER_ROW
,
int
ROWS_PER_CTA
=
WARPS_M
,
int
ELTS_PER_ROW_PER_CTA
=
THREADS_PER_ROW
*
VecSize
,
int
LDGS
=
ELTS_PER_ROW
/
ELTS_PER_ROW_PER_CTA
>
__global__
__launch_bounds__
(
THREADS_PER_CTA
)
void
fused_ln_fwd_1024_kernel
(
int
rows
,
int
cols
,
uint64_t
seed
,
const
float
dropout_prob
,
const
bool
is_upscale_in_train
,
const
bool
is_test
,
const
uint64_t
increment
,
const
float
epsilon
,
const
T
*
__restrict__
x_ptr
,
const
T
*
__restrict__
residual_ptr
,
const
ScaleT
*
__restrict__
gamma_ptr
,
const
ScaleT
*
__restrict__
beta_ptr
,
MaskType
*
__restrict__
mask_out_ptr
,
U
*
__restrict__
mean_out_ptr
,
U
*
__restrict__
var_out_ptr
,
T
*
__restrict__
residual_out_ptr
,
T
*
__restrict__
y_ptr
)
{
using
Vec
=
platform
::
AlignedVector
<
T
,
VecSize
>
;
using
Vec_scale
=
platform
::
AlignedVector
<
ScaleT
,
VecSize
>
;
using
MaskStoreT
=
platform
::
AlignedVector
<
MaskType
,
VecSize
>
;
const
int
tidx
=
threadIdx
.
x
;
const
int
bidx
=
blockIdx
.
x
;
const
int
lane
=
tidx
%
THREADS_PER_WARP
;
// 0, 1, ..., 31
const
int
warp
=
tidx
/
THREADS_PER_WARP
;
// 0, 1, 2, 3
const
int
warp_n
=
warp
%
WARPS_N
;
// 0
const
int
warp_m
=
warp
/
WARPS_N
;
// 0, 1, 2, 3
const
int
c
=
warp_n
*
THREADS_PER_WARP
+
lane
;
// lane
const
int
r
=
bidx
*
ROWS_PER_CTA
+
warp_m
;
// row id
int
idx
=
r
*
LN_NUM_COLS
+
c
;
curandStatePhilox4_32_10_t
state
;
curand_init
(
seed
,
idx
,
increment
,
&
state
);
T
factor
=
GetFactor
<
T
>
(
dropout_prob
,
is_upscale_in_train
,
is_test
);
Vec_scale
gamma
[
LDGS
];
Vec_scale
beta
[
LDGS
];
#pragma unroll
for
(
int
it
=
0
,
col
=
c
;
it
<
LDGS
;
it
++
)
{
platform
::
Load
<
ScaleT
,
VecSize
>
(
gamma_ptr
+
col
*
VecSize
,
&
gamma
[
it
]);
platform
::
Load
<
ScaleT
,
VecSize
>
(
beta_ptr
+
col
*
VecSize
,
&
beta
[
it
]);
col
+=
THREADS_PER_ROW
;
}
constexpr
U
rn
=
1.
f
/
U
(
LN_NUM_COLS
);
for
(
int
row
=
r
;
row
<
rows
;
row
+=
gridDim
.
x
*
ROWS_PER_CTA
)
{
Vec
x
[
LDGS
];
Vec
residual
[
LDGS
];
#pragma unroll
for
(
int
it
=
0
,
col
=
c
;
it
<
LDGS
;
it
++
)
{
platform
::
Load
<
T
,
VecSize
>
(
x_ptr
+
row
*
LN_NUM_COLS
+
col
*
VecSize
,
&
x
[
it
]);
platform
::
Load
<
T
,
VecSize
>
(
residual_ptr
+
row
*
LN_NUM_COLS
+
col
*
VecSize
,
&
residual
[
it
]);
col
+=
THREADS_PER_ROW
;
}
MaskStoreT
mask_vec
[
LDGS
];
if
(
!
is_test
)
{
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
float
rand
[
VecSize
];
RandVec
<
VecSize
>
(
&
state
,
rand
);
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
#pragma unroll
mask_vec
[
it
][
jt
]
=
static_cast
<
MaskType
>
(
rand
[
jt
]
>=
dropout_prob
);
}
}
}
else
{
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
mask_vec
[
it
][
jt
]
=
static_cast
<
MaskType
>
(
1
);
}
}
}
// 4 * 8
U
xf
[
LDGS
*
VecSize
];
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
// dropout(x) + residual
x
[
it
][
jt
]
=
x
[
it
][
jt
]
*
static_cast
<
T
>
(
mask_vec
[
it
][
jt
])
*
factor
+
residual
[
it
][
jt
];
xf
[
it
*
VecSize
+
jt
]
=
U
(
x
[
it
][
jt
]);
}
}
// store dropout_residual_out and mask_out
#pragma unroll
for
(
int
it
=
0
,
col
=
c
;
it
<
LDGS
;
it
++
)
{
platform
::
Store
<
T
,
VecSize
>
(
x
[
it
],
residual_out_ptr
+
row
*
LN_NUM_COLS
+
col
*
VecSize
);
platform
::
Store
<
MaskType
,
VecSize
>
(
mask_vec
[
it
],
mask_out_ptr
+
row
*
LN_NUM_COLS
+
col
*
VecSize
);
col
+=
THREADS_PER_ROW
;
}
U
mu_local
=
0.
f
;
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
mu_local
+=
xf
[
it
*
VecSize
+
jt
];
}
}
#pragma unroll
for
(
int
it
=
1
;
it
<
THREADS_PER_WARP
;
it
*=
2
)
{
mu_local
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
mu_local
,
it
);
}
mu_local
*=
rn
;
if
(
lane
==
0
)
{
mean_out_ptr
[
row
]
=
mu_local
;
}
U
var_local
=
0.
f
;
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
U
diff
=
xf
[
it
*
VecSize
+
jt
]
-
mu_local
;
var_local
+=
diff
*
diff
;
}
}
#pragma unroll
for
(
int
it
=
1
;
it
<
THREADS_PER_WARP
;
it
*=
2
)
{
var_local
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
var_local
,
it
);
}
U
rsigma
=
rsqrtf
(
var_local
*
rn
+
epsilon
);
if
(
lane
==
0
)
{
// Note: the stored var is different for paddle(ln) and apex (fast ln).
// var_out_ptr[row] = rsigma;
var_out_ptr
[
row
]
=
var_local
*
rn
;
}
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
// use fp16 to compute
// ScaleT tmp = static_cast<ScaleT>(rsigma * (xf[it * VecSize + jt] -
// mu_local));
// x[it][jt] = gamma[it][jt] * tmp + beta[it][jt];
// cast to fp32 to compute
U
tmp
=
rsigma
*
(
static_cast
<
U
>
(
xf
[
it
*
VecSize
+
jt
])
-
mu_local
);
x
[
it
][
jt
]
=
static_cast
<
T
>
(
static_cast
<
U
>
(
gamma
[
it
][
jt
])
*
tmp
+
static_cast
<
U
>
(
beta
[
it
][
jt
]));
}
}
#pragma unroll
for
(
int
it
=
0
,
col
=
c
;
it
<
LDGS
;
it
++
)
{
platform
::
Store
<
T
,
VecSize
>
(
x
[
it
],
y_ptr
+
row
*
LN_NUM_COLS
+
col
*
VecSize
);
col
+=
THREADS_PER_ROW
;
}
}
}
/**
* @brief layernorm(residual + dropout(src + bias));
* @param
...
...
@@ -205,6 +392,13 @@ void LaunchLayernormResidualDropoutBias(
return
;
}
bool
can_call_1024_kernel
=
false
;
if
(
cols
==
1024
&&
scale
!=
nullptr
&&
layernorm_bias
!=
nullptr
&&
bias
==
nullptr
)
{
can_call_1024_kernel
=
true
;
}
VLOG
(
6
)
<<
"can_call_1024_kernel = "
<<
can_call_1024_kernel
;
const
int
VecSize
=
MAX_CACHE_BYTES
/
sizeof
(
T
);
if
(
cols
%
VecSize
!=
0
)
{
int
blockDim
=
GetDesiredBlockDim
(
cols
);
...
...
@@ -215,13 +409,35 @@ void LaunchLayernormResidualDropoutBias(
epsilon
,
src
,
residual
,
bias
,
scale
,
layernorm_bias
,
mask_data
,
dst
,
layernorm_dst
,
mean
,
var
);
}
else
{
int
blockDim
=
GetDesiredBlockDim
(
cols
/
VecSize
);
FusedLayernormResidualDropoutBias
<
T
,
uint8_t
,
VecSize
,
U
,
ScaleBiasWithSameTypeX
><<<
rows
,
blockDim
,
0
,
ctx
.
stream
()
>>>
(
rows
,
cols
,
seed
,
dropout_prob
,
is_upscale_in_train
,
is_test
,
increment
,
epsilon
,
src
,
residual
,
bias
,
scale
,
layernorm_bias
,
mask_data
,
dst
,
layernorm_dst
,
mean
,
var
);
if
(
can_call_1024_kernel
)
{
const
int
WARPS_M
=
4
;
const
int
WARPS_N
=
1
;
const
int
THREADS_PER_WARP
=
32
;
const
int
BYTES_PER_LDG
=
16
;
const
int
VecSize
=
BYTES_PER_LDG
/
sizeof
(
T
);
const
int
THREADS_PER_CTA
=
WARPS_N
*
THREADS_PER_WARP
*
WARPS_M
;
const
int
ROWS_PER_CTA
=
WARPS_M
;
// Note: the grid can not exceed max_grid of the gpu.
const
int
grid
=
static_cast
<
int
>
(
std
::
ceil
(
rows
/
static_cast
<
float
>
(
ROWS_PER_CTA
)));
fused_ln_fwd_1024_kernel
<
T
,
U
,
LayerNormScaleBiasT
<
T
,
U
,
ScaleBiasWithSameTypeX
>
,
uint8_t
,
VecSize
,
WARPS_M
,
WARPS_N
,
BYTES_PER_LDG
><<<
grid
,
THREADS_PER_CTA
,
0
,
ctx
.
stream
()
>>>
(
rows
,
cols
,
seed
,
dropout_prob
,
is_upscale_in_train
,
is_test
,
increment
,
epsilon
,
src
,
residual
,
scale
,
layernorm_bias
,
mask_data
,
mean
,
var
,
dst
,
layernorm_dst
);
}
else
{
int
blockDim
=
GetDesiredBlockDim
(
cols
/
VecSize
);
FusedLayernormResidualDropoutBias
<
T
,
uint8_t
,
VecSize
,
U
,
ScaleBiasWithSameTypeX
><<<
rows
,
blockDim
,
0
,
ctx
.
stream
()
>>>
(
rows
,
cols
,
seed
,
dropout_prob
,
is_upscale_in_train
,
is_test
,
increment
,
epsilon
,
src
,
residual
,
bias
,
scale
,
layernorm_bias
,
mask_data
,
dst
,
layernorm_dst
,
mean
,
var
);
}
}
}
...
...
paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias_test.cu
浏览文件 @
01d04be6
...
...
@@ -66,12 +66,10 @@ struct TestFusedLayernormResidualDropoutBias {
ctx
=
reinterpret_cast
<
platform
::
CUDADeviceContext
*>
(
devicectx
);
}
TestFusedLayernormResidualDropoutBias
(
int
_rows
,
int
_cols
,
uint64_t
_seed
=
0
,
float
_dropout_prob
=
0.0
,
float
_epsilon
=
0.00001
f
,
bool
_is_upscale_in_train
=
false
,
bool
_is_test
=
false
)
{
TestFusedLayernormResidualDropoutBias
(
int
_rows
,
int
_cols
,
uint64_t
_seed
=
0
,
float
_dropout_prob
=
0.0
,
float
_epsilon
=
0.00001
f
,
bool
_is_upscale_in_train
=
false
,
bool
_is_test
=
false
,
bool
_has_bias
=
true
)
{
rows
=
_rows
;
cols
=
_cols
;
seed
=
_seed
;
...
...
@@ -79,7 +77,7 @@ struct TestFusedLayernormResidualDropoutBias {
epsilon
=
_epsilon
;
is_upscale_in_train
=
_is_upscale_in_train
;
is_test
=
_is_test
;
has_bias
=
true
;
has_bias
=
_has_bias
;
has_scale
=
true
;
has_layernorm_bias
=
true
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
...
...
@@ -283,7 +281,6 @@ static void BaseTest(const bool is_fp16 = false) {
}
}
}
TEST
(
FusedDropout
,
GPUFusedLayernormResidualDropoutBias
)
{
BaseTest
<
float
>
();
}
TEST
(
FusedDropout
,
GPUFusedLayernormResidualDropoutBiasDouble
)
{
...
...
@@ -330,3 +327,12 @@ TEST(FusedDropout, GPUFusedLayernormResidualDropoutLargeShape) {
test
.
Run
();
test
.
CheckOut
(
static_cast
<
float
>
(
1e-4
));
}
TEST
(
FusedDropout
,
GPUFusedLayernormResidualDropoutFp16MLperf
)
{
const
int
rows
=
512
;
const
int
cols
=
1024
;
TestFusedLayernormResidualDropoutBias
<
platform
::
float16
>
test
(
rows
,
cols
,
0
,
0
,
0.00001
f
,
false
,
false
,
false
);
test
.
Run
();
test
.
CheckOut
(
static_cast
<
platform
::
float16
>
(
1e-2
));
}
paddle/fluid/operators/layer_norm_kernel.cu.h
浏览文件 @
01d04be6
...
...
@@ -23,6 +23,7 @@ namespace cub = hipcub;
#endif
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
...
...
@@ -35,6 +36,8 @@ using CudnnDataType = platform::CudnnDataType<T>;
template
<
typename
T
>
using
LayerNormParamType
=
typename
CudnnDataType
<
T
>::
BatchNormParamType
;
#define LN_NUM_COLS 1024
inline
static
int
GetDesiredBlockDim
(
int64_t
block_dim
)
{
#ifdef __HIPCC__
const
int
kMaxBlockDim
=
256
;
...
...
@@ -169,6 +172,118 @@ __inline__ __device__ half rsqrt_(const half val) {
}
#endif
#ifdef PADDLE_WITH_CUDA
template
<
typename
T
,
typename
U
,
typename
ScaleT
=
U
,
int
VecSize
=
8
,
int
WARPS_M
=
4
,
int
WARPS_N
=
1
,
int
BYTES_PER_LDG
=
16
,
int
ELTS_PER_ROW
=
1024
,
int
THREADS_PER_WARP
=
32
,
int
THREADS_PER_ROW
=
WARPS_N
*
THREADS_PER_WARP
,
int
THREADS_PER_CTA
=
WARPS_M
*
THREADS_PER_ROW
,
int
ROWS_PER_CTA
=
WARPS_M
,
int
ELTS_PER_ROW_PER_CTA
=
THREADS_PER_ROW
*
VecSize
,
int
LDGS
=
ELTS_PER_ROW
/
ELTS_PER_ROW_PER_CTA
>
__global__
__launch_bounds__
(
THREADS_PER_CTA
)
void
ln_fwd_1024_kernel
(
int
rows
,
int
cols
,
const
float
epsilon
,
const
T
*
__restrict__
x_ptr
,
const
ScaleT
*
__restrict__
gamma_ptr
,
const
ScaleT
*
__restrict__
beta_ptr
,
U
*
__restrict__
mean_out_ptr
,
U
*
__restrict__
var_out_ptr
,
T
*
__restrict__
y_ptr
)
{
using
Vec
=
platform
::
AlignedVector
<
T
,
VecSize
>
;
using
Vec_scale
=
platform
::
AlignedVector
<
ScaleT
,
VecSize
>
;
const
int
tidx
=
threadIdx
.
x
;
const
int
bidx
=
blockIdx
.
x
;
const
int
lane
=
tidx
%
THREADS_PER_WARP
;
// 0, 1, ..., 31
const
int
warp
=
tidx
/
THREADS_PER_WARP
;
// 0, 1, 2, 3
const
int
warp_n
=
warp
%
WARPS_N
;
// 0
const
int
warp_m
=
warp
/
WARPS_N
;
// 0, 1, 2, 3
const
int
c
=
warp_n
*
THREADS_PER_WARP
+
lane
;
// lane
const
int
r
=
bidx
*
ROWS_PER_CTA
+
warp_m
;
// row id
Vec_scale
gamma
[
LDGS
];
Vec_scale
beta
[
LDGS
];
#pragma unroll
for
(
int
it
=
0
,
col
=
c
;
it
<
LDGS
;
it
++
)
{
platform
::
Load
<
ScaleT
,
VecSize
>
(
gamma_ptr
+
col
*
VecSize
,
&
gamma
[
it
]);
platform
::
Load
<
ScaleT
,
VecSize
>
(
beta_ptr
+
col
*
VecSize
,
&
beta
[
it
]);
col
+=
THREADS_PER_ROW
;
}
constexpr
U
rn
=
1.
f
/
U
(
LN_NUM_COLS
);
for
(
int
row
=
r
;
row
<
rows
;
row
+=
gridDim
.
x
*
ROWS_PER_CTA
)
{
Vec
x
[
LDGS
];
#pragma unroll
for
(
int
it
=
0
,
col
=
c
;
it
<
LDGS
;
it
++
)
{
platform
::
Load
<
T
,
VecSize
>
(
x_ptr
+
row
*
LN_NUM_COLS
+
col
*
VecSize
,
&
x
[
it
]);
col
+=
THREADS_PER_ROW
;
}
U
xf
[
LDGS
*
VecSize
];
U
mu_local
=
0.
f
;
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
xf
[
it
*
VecSize
+
jt
]
=
U
(
x
[
it
][
jt
]);
mu_local
+=
xf
[
it
*
VecSize
+
jt
];
}
}
#pragma unroll
for
(
int
it
=
1
;
it
<
THREADS_PER_WARP
;
it
*=
2
)
{
mu_local
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
mu_local
,
it
);
}
mu_local
*=
rn
;
if
(
lane
==
0
)
{
mean_out_ptr
[
row
]
=
mu_local
;
}
U
var_local
=
0.
f
;
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
U
diff
=
xf
[
it
*
VecSize
+
jt
]
-
mu_local
;
var_local
+=
diff
*
diff
;
}
}
#pragma unroll
for
(
int
it
=
1
;
it
<
THREADS_PER_WARP
;
it
*=
2
)
{
var_local
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
var_local
,
it
);
}
// Note: to assure if it is right for double
U
rsigma
=
rsqrtf
(
var_local
*
rn
+
epsilon
);
if
(
lane
==
0
)
{
var_out_ptr
[
row
]
=
var_local
*
rn
;
}
#pragma unroll
for
(
int
it
=
0
;
it
<
LDGS
;
it
++
)
{
#pragma unroll
for
(
int
jt
=
0
;
jt
<
VecSize
;
jt
++
)
{
// use fp16 to compute
// ScaleT tmp = static_cast<ScaleT>(rsigma * (xf[it * VecSize + jt] -
// mu_local));
// x[it][jt] = gamma[it][jt] * tmp + beta[it][jt];
// cast to fp32 to compute
U
tmp
=
(
rsigma
*
(
static_cast
<
U
>
(
xf
[
it
*
VecSize
+
jt
])
-
mu_local
));
x
[
it
][
jt
]
=
static_cast
<
T
>
(
static_cast
<
U
>
(
gamma
[
it
][
jt
])
*
tmp
+
static_cast
<
U
>
(
beta
[
it
][
jt
]));
}
}
#pragma unroll
for
(
int
it
=
0
,
col
=
c
;
it
<
LDGS
;
it
++
)
{
platform
::
Store
<
T
,
VecSize
>
(
x
[
it
],
y_ptr
+
row
*
LN_NUM_COLS
+
col
*
VecSize
);
col
+=
THREADS_PER_ROW
;
}
}
}
#endif
template
<
typename
T
,
typename
U
,
bool
ScaleBiasWithSameTypeX
>
using
LayerNormScaleBiasT
=
typename
std
::
conditional
<
ScaleBiasWithSameTypeX
,
T
,
U
>::
type
;
...
...
paddle/fluid/operators/layer_norm_op.cu
浏览文件 @
01d04be6
...
...
@@ -112,11 +112,49 @@ class LayerNormKernel<platform::CUDADeviceContext, T>
} \
} while (0)
if
(
is_scale_bias_same_dtype_with_x
)
{
PADDLE_LAUNCH_LAYERNORM_FWD
(
T
,
true
);
#ifdef PADDLE_WITH_CUDA
bool
can_call_1024_kernel
=
false
;
if
(
feature_size
==
1024
&&
scale
!=
nullptr
&&
bias
!=
nullptr
)
{
can_call_1024_kernel
=
true
;
}
if
(
can_call_1024_kernel
)
{
const
int
WARPS_M
=
4
;
const
int
WARPS_N
=
1
;
const
int
THREADS_PER_WARP
=
32
;
const
int
BYTES_PER_LDG
=
16
;
const
int
VecSize
=
BYTES_PER_LDG
/
sizeof
(
T
);
const
int
THREADS_PER_CTA
=
WARPS_N
*
THREADS_PER_WARP
*
WARPS_M
;
const
int
ROWS_PER_CTA
=
WARPS_M
;
const
int
grid
=
static_cast
<
int
>
(
std
::
ceil
(
batch_size
/
static_cast
<
float
>
(
ROWS_PER_CTA
)));
if
(
is_scale_bias_same_dtype_with_x
)
{
ln_fwd_1024_kernel
<
T
,
U
,
T
,
VecSize
,
WARPS_M
,
WARPS_N
,
BYTES_PER_LDG
><<<
grid
,
THREADS_PER_CTA
,
0
,
stream
>>>
(
batch_size
,
feature_size
,
epsilon
,
x_data
,
static_cast
<
const
T
*>
(
void_scale_data
),
static_cast
<
const
T
*>
(
void_bias_data
),
mean_data
,
var_data
,
y_data
);
}
else
{
ln_fwd_1024_kernel
<
T
,
U
,
U
,
VecSize
,
WARPS_M
,
WARPS_N
,
BYTES_PER_LDG
><<<
grid
,
THREADS_PER_CTA
,
0
,
stream
>>>
(
batch_size
,
feature_size
,
epsilon
,
x_data
,
static_cast
<
const
U
*>
(
void_scale_data
),
static_cast
<
const
U
*>
(
void_bias_data
),
mean_data
,
var_data
,
y_data
);
}
}
else
{
PADDLE_LAUNCH_LAYERNORM_FWD
(
U
,
false
);
#endif
if
(
is_scale_bias_same_dtype_with_x
)
{
PADDLE_LAUNCH_LAYERNORM_FWD
(
T
,
true
);
}
else
{
PADDLE_LAUNCH_LAYERNORM_FWD
(
U
,
false
);
}
#ifdef PADDLE_WITH_CUDA
}
#endif
#undef PADDLE_LAUNCH_LAYERNORM_FWD
}
};
...
...
python/paddle/fluid/tests/unittests/test_layer_norm_op.py
浏览文件 @
01d04be6
...
...
@@ -278,6 +278,8 @@ class TestLayerNormOp(unittest.TestCase):
has_scale
=
False
,
has_bias
=
False
,
y_grad_scale
=
0.1
)
self
.
check_forward_backward
(
shape
=
[
512
,
1024
],
begin_norm_axis
=
1
,
has_scale
=
True
,
has_bias
=
True
)
class
TestLayerNormAPI
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录