multiplex_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/multiplex_op.h"
Y
Yibing Liu 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class MultiplexOp : public framework::OperatorWithKernel {
 public:
24
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
25

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null.");
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(),
29
                   "MultiInput(X) shouldn't be empty.");
Q
Qiao Longfei 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto ids_dim = ctx->GetInputDim("Ids");
32 33 34 35
    PADDLE_ENFORCE(
        ids_dim.size() == 2 && ids_dim[1] == 1,
        "The index tensor must be a vector with size batchSize x 1.");

Q
Qiao Longfei 已提交
36 37
    auto ins_dims = ctx->GetInputsDim("X");
    auto num_ins = ins_dims.size();
38 39 40
    PADDLE_ENFORCE(num_ins > 1,
                   "multiplex operator should have more than "
                   "one candidate input tensors.");
Y
Yibing Liu 已提交
41

Q
Qiao Longfei 已提交
42
    auto in_dim = ins_dims[0];
43 44
    PADDLE_ENFORCE(in_dim.size() >= 2,
                   "The rank of candidate tensors must be not less than 2.");
45
    for (size_t i = 1; i < num_ins; i++) {
Q
Qiao Longfei 已提交
46
      auto dim = ins_dims[i];
Y
Yibing Liu 已提交
47
      PADDLE_ENFORCE(in_dim == dim,
48
                     "All the candidate tensors must have the same size.");
Y
Yibing Liu 已提交
49
    }
Q
Qiao Longfei 已提交
50
    ctx->SetOutputDim("Out", in_dim);
Y
Yibing Liu 已提交
51
  }
Y
Yu Yang 已提交
52

53
 protected:
54
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
55
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
56 57 58
    return framework::OpKernelType(
        framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type()),
        ctx.device_context());
Y
Yu Yang 已提交
59
  }
Y
Yibing Liu 已提交
60 61 62 63
};

class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
64
  void Make() override {
Y
yuyang18 已提交
65 66 67 68 69 70
    AddInput("Ids",
             "Tensor<int32>, index variable which is a 2-D tensor with shape "
             "[M, 1] where M is the batch size.");
    AddInput("X",
             "A list of variables to gather from. All variables have the same "
             "shape and the rank is at least 2.")
71
        .AsDuplicable();
Y
Yibing Liu 已提交
72
    AddOutput("Out", "The output tensor of multiplex operator.");
K
kexinzhao 已提交
73
    AddComment(R"DOC(
Y
yuyang18 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
Referring to the given index variable, this layer selects rows from the
input variables to construct a multiplex variable. Assuming that there are
:math:`m` input variables and :math:`I_i` represents the i-th input
variable and :math:`i` is in [0, :math:`m`). All input variables are
tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
Please note that rank of the input tensor should be at least 2. Each input
variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
* ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
variable. The given index variable should be a 2-D tensor with shape
[:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
Then the output variable will be a tensor with shape [:math:`d_0`,
:math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.

* Ids: the index tensor.

* X[0 : N - 1]: the candidate tensors for output (N >= 2).

* For each index i from 0 to batchSize - 1, the output is the i-th row of the
95
the (Ids[i])-th tensor.
Y
Yibing Liu 已提交
96

97
For i-th row of the output tensor:
Y
Yibing Liu 已提交
98

Y
yuyang18 已提交
99
$ y[i] = x_{k}[i] $
Y
Yibing Liu 已提交
100

Y
yuyang18 已提交
101 102
where $y$ is the output tensor, $x_{k}$ is the k-th input tensor,
and $k = Ids[i]$.
K
kexinzhao 已提交
103

Y
Yibing Liu 已提交
104 105 106 107 108 109
)DOC");
  }
};

class MultiplexGradOp : public framework::OperatorWithKernel {
 public:
110
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
111

112
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
113 114
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null.");
    PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(),
Y
Yibing Liu 已提交
115
                   "Output(X@Grad) should not be null.");
Q
Qiao Longfei 已提交
116 117
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
118
    ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
Y
Yibing Liu 已提交
119
  }
Y
Yu Yang 已提交
120

121
 protected:
122
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
123
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
124 125 126
    return framework::OpKernelType(
        framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type()),
        ctx.device_context());
Y
Yu Yang 已提交
127
  }
Y
Yibing Liu 已提交
128 129 130 131 132 133
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

134 135 136
REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<false>);
REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp);
Y
Yibing Liu 已提交
137
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
138
    multiplex,
139 140 141 142
    ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, int>,
    ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, int64_t>);
143 144
REGISTER_OP_CPU_KERNEL(
    multiplex_grad,
145 146 147 148
    ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, int>,
    ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, int64_t>);