prim_op_test.cc 22.9 KB
Newer Older
L
levi131 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"

USE_OP_ITSELF(reshape_p);
USE_OP_ITSELF(broadcast_p);
21
USE_OP_ITSELF(reduce_sum_p);
L
levi131 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
USE_OP_ITSELF(transpose_p);
USE_OP_ITSELF(split_p);
USE_OP_ITSELF(concat_p);
USE_OP_ITSELF(slice_select_p);
USE_OP_ITSELF(slice_assign_p);
USE_OP_ITSELF(gather_p);
USE_OP_ITSELF(scatter_add_p);
USE_OP_ITSELF(add_p);
USE_OP_ITSELF(sub_p);
USE_OP_ITSELF(mul_p);
USE_OP_ITSELF(div_p);
USE_OP_ITSELF(sqrt_p);
USE_OP_ITSELF(tanh_p);
USE_OP_ITSELF(matmul_p);
USE_OP_ITSELF(fill_constant_p);
37
USE_OP_ITSELF(log_p);
38 39 40
USE_OP_ITSELF(select_p);
USE_OP_ITSELF(eq_p);
USE_OP_ITSELF(pow_p);
41
USE_OP_ITSELF(max_p);
42
USE_OP_ITSELF(erf_p);
43
USE_OP_ITSELF(bernoulli_p);
L
levi131 已提交
44 45 46 47

namespace paddle {
namespace framework {

48 49
static void NewVar(BlockDesc *block,
                   const std::string &name,
L
levi131 已提交
50 51 52 53 54 55 56 57 58
                   const std::vector<int64_t> &shape) {
  auto *var_desc = block->Var(name);
  if (shape.size() > 0) {
    var_desc->SetShape(shape);
    var_desc->SetType(proto::VarType::LOD_TENSOR);
    var_desc->SetDataType(proto::VarType_Type_FP32);
  }
}

59 60 61 62
static void AppendOp(BlockDesc *block,
                     const std::string &type,
                     VariableNameMap inputs,
                     VariableNameMap outputs,
L
levi131 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
                     AttributeMap attrs) {
  auto &op_info = OpInfoMap::Instance().Get(type);
  if (op_info.Checker()) {
    op_info.Checker()->Check(&attrs);
  }

  auto *op = block->AppendOp();
  op->SetType(type);
  for (auto &pair : inputs) {
    op->SetInput(pair.first, pair.second);
  }

  for (auto &pair : outputs) {
    op->SetOutput(pair.first, pair.second);
    for (auto &var_name : pair.second) {
      if (!block->FindVarRecursive(var_name)) {
        NewVar(block, var_name, {});
      }
    }
  }

  op->SetAttrMap(attrs);
  op->InferVarType(block);
  op->InferShape(*block);
}

TEST(PrimOp, reshape_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
98 99 100 101
  AppendOp(block,
           "reshape_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
           {{"shape", std::vector<int64_t>{12, 5}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 2UL);
  ASSERT_EQ(shapes[0], 12L);
  ASSERT_EQ(shapes[1], 5L);
}

TEST(PrimOp, broadcast_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 1};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
120 121 122 123
  AppendOp(block,
           "broadcast_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
124 125 126 127 128 129 130 131 132 133
           {{"shape", std::vector<int64_t>{3, 4, 5}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

134
TEST(PrimOp, reduce_sum_p) {
L
levi131 已提交
135 136 137 138 139 140 141 142 143
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
144
  AppendOp(block,
145
           "reduce_sum_p",
146 147
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
148 149 150 151 152 153
           {{"axis", std::vector<int64_t>{0, 2}}, {"keepdim", false}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 1UL);
  ASSERT_EQ(shapes[0], 4L);
154
  AppendOp(block,
155
           "reduce_sum_p",
156 157
           {{"X", {x0}}},
           {{"Y", {x2}}},
L
levi131 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
           {{"axis", std::vector<int64_t>{0, 2}}, {"keepdim", true}});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 1L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 1L);
}

TEST(PrimOp, transpose_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
177 178 179 180
  AppendOp(block,
           "transpose_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
           {{"axis", std::vector<int64_t>{2, 1, 0}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 5L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 3L);
}

TEST(PrimOp, split_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{6, 8, 10};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";
  std::string x3 = "x3";

  NewVar(block, x0, shape);
202 203 204 205
  AppendOp(block,
           "split_p",
           {{"X", {x0}}},
           {{"YS", {x1, x2, x3}}},
L
levi131 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
           {{"axis", int64_t{1}},
            {"num_or_sections", std::vector<int64_t>{2, 4, 2}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 2L);
  ASSERT_EQ(shapes[2], 10L);
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 10L);
  ASSERT_EQ(block->Var("x3")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x3")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x3")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 2L);
  ASSERT_EQ(shapes[2], 10L);
  std::string x4 = "x4";
  std::string x5 = "x5";
  AppendOp(
232 233 234 235
      block,
      "split_p",
      {{"X", {x0}}},
      {{"YS", {x4, x5}}},
L
levi131 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
      {{"axis", int64_t{2}}, {"num_or_sections", std::vector<int64_t>{2}}});
  ASSERT_EQ(block->Var("x4")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x4")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x4")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 5L);
  ASSERT_EQ(block->Var("x5")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x5")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x5")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, concat_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape_0{3, 1, 5};
  std::vector<int64_t> shape_1{3, 4, 5};
  std::vector<int64_t> shape_2{3, 6, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";
  std::string x3 = "x3";

  NewVar(block, x0, shape_0);
  NewVar(block, x1, shape_1);
  NewVar(block, x2, shape_2);
268 269 270 271
  AppendOp(block,
           "concat_p",
           {{"XS", {x0, x1, x2}}},
           {{"Y", {x3}}},
L
levi131 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
           {{"axis", int64_t{1}}});
  ASSERT_EQ(block->Var("x3")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x3")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x3")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 11L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, slice_select_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{6, 8, 10};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
291 292 293 294
  AppendOp(block,
           "slice_select_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
           {{"axis", std::vector<int64_t>{0, 1, 2}},
            {"starts", std::vector<int64_t>{0, 0, 0}},
            {"ends", std::vector<int64_t>{5, 7, 9}},
            {"strides", std::vector<int64_t>{2, 2, 2}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, slice_assign_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape_0{6, 8, 10};
  std::vector<int64_t> shape_1{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape_0);
  NewVar(block, x1, shape_1);
320 321 322 323
  AppendOp(block,
           "slice_assign_p",
           {{"X", {x0}}, {"Y", {x1}}},
           {{"Z", {x2}}},
L
levi131 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
           {{"axis", std::vector<int64_t>{0, 1, 2}},
            {"starts", std::vector<int64_t>{0, 0, 0}},
            {"ends", std::vector<int64_t>{5, 7, 9}},
            {"strides", std::vector<int64_t>{2, 2, 2}}});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 10L);
}

TEST(PrimOp, gather_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{6, 8, 10};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
346 347 348 349
  AppendOp(block,
           "gather_p",
           {{"X", {x0}}},
           {{"Y", {x1}}},
L
levi131 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
           {{"axis", int64_t{1}}, {"index", std::vector<int64_t>{0, 2, 5}}});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 3L);
  ASSERT_EQ(shapes[2], 10L);
  std::string index_t = "index_t";
  std::string x2 = "x2";

  auto *var_desc = block->Var(index_t);
  var_desc->SetShape(std::vector<int64_t>{3});
  var_desc->SetType(proto::VarType::LOD_TENSOR);
  var_desc->SetDataType(proto::VarType_Type_INT32);
365 366 367 368 369
  AppendOp(block,
           "gather_p",
           {{"X", {x0}}, {"IndexTensor", {index_t}}},
           {{"Y", {x2}}},
           {{"axis", int64_t{1}}});
L
levi131 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 3L);
  ASSERT_EQ(shapes[2], 10L);
}

TEST(PrimOp, scatter_add_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape_0{6, 8, 10};
  std::vector<int64_t> shape_1{6, 3, 10};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape_0);
  NewVar(block, x1, shape_1);
391 392 393 394
  AppendOp(block,
           "scatter_add_p",
           {{"X", {x0}}, {"Y", {x1}}},
           {{"Z", {x2}}},
L
levi131 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
           {{"axis", int64_t{1}}, {"index", std::vector<int64_t>{0, 2, 5}}});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 10L);
  std::string index_t = "index_t";
  std::string x3 = "x3";

  auto *var_desc = block->Var(index_t);
  var_desc->SetShape(std::vector<int64_t>{3});
  var_desc->SetType(proto::VarType::LOD_TENSOR);
  var_desc->SetDataType(proto::VarType_Type_INT32);
410 411
  AppendOp(block,
           "scatter_add_p",
L
levi131 已提交
412
           {{"X", {x0}}, {"Y", {x1}}, {"IndexTensor", {index_t}}},
413 414
           {{"Z", {x3}}},
           {{"axis", int64_t{1}}});
L
levi131 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
  ASSERT_EQ(block->Var("x3")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x3")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x3")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 6L);
  ASSERT_EQ(shapes[1], 8L);
  ASSERT_EQ(shapes[2], 10L);
}

TEST(PrimOp, add_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
  NewVar(block, x1, shape);
  AppendOp(block, "add_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, sub_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
  NewVar(block, x1, shape);
  AppendOp(block, "sub_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, mul_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
  NewVar(block, x1, shape);
  AppendOp(block, "mul_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, div_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape);
  NewVar(block, x1, shape);
  AppendOp(block, "div_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, sqrt_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
  AppendOp(block, "sqrt_p", {{"X", {x0}}}, {{"Y", {x1}}}, {});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, tanh_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
  AppendOp(block, "tanh_p", {{"X", {x0}}}, {{"Y", {x1}}}, {});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, matmul_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape_0{3, 4, 5};
  std::vector<int64_t> shape_1{3, 5, 8};

  std::string x0 = "x0";
  std::string x1 = "x1";
  std::string x2 = "x2";

  NewVar(block, x0, shape_0);
  NewVar(block, x1, shape_1);
  AppendOp(block, "matmul_p", {{"X", {x0}}, {"Y", {x1}}}, {{"Z", {x2}}}, {});
  ASSERT_EQ(block->Var("x2")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x2")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x2")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 8L);
  std::vector<int64_t> shape_2{4, 5};
  std::vector<int64_t> shape_3{5, 8};

  std::string x3 = "x3";
  std::string x4 = "x4";
  std::string x5 = "x5";

  NewVar(block, x3, shape_2);
  NewVar(block, x4, shape_3);
  AppendOp(block, "matmul_p", {{"X", {x3}}, {"Y", {x4}}}, {{"Z", {x5}}}, {});
  ASSERT_EQ(block->Var("x5")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x5")->GetDataType(), proto::VarType_Type_FP32);
  shapes = block->Var("x5")->GetShape();
  ASSERT_EQ(shapes.size(), 2UL);
  ASSERT_EQ(shapes[0], 4L);
  ASSERT_EQ(shapes[1], 8L);
}

TEST(PrimOp, fill_constant_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::string x0 = "x0";

589 590 591 592
  AppendOp(block,
           "fill_constant_p",
           {{}},
           {{"Y", {x0}}},
L
levi131 已提交
593 594 595 596 597 598 599 600 601 602 603 604
           {{"value", 0.0f},
            {"dtype", proto::VarType_Type_FP32},
            {"shape", std::vector<int64_t>{3, 4, 5}}});
  ASSERT_EQ(block->Var("x0")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x0")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x0")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
TEST(PrimOp, log_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
  AppendOp(block, "log_p", {{"X", {x0}}}, {{"Y", {x1}}}, {});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
TEST(PrimOp, select_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{2, 3};

  std::string cond = "cond";
  std::string x = "x";
  std::string y = "y";
  std::string z = "z";

  NewVar(block, cond, shape);
  NewVar(block, x, shape);
  NewVar(block, y, shape);

  AppendOp(block,
           "select_p",
           {{"Condition", {cond}}, {"X", {x}}, {"Y", {y}}},
           {{"Z", {z}}},
           {});
  ASSERT_EQ(block->Var("z")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("z")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("z")->GetShape();
  ASSERT_EQ(shapes.size(), 2UL);
  ASSERT_EQ(shapes[0], 2L);
  ASSERT_EQ(shapes[1], 3L);
}

TEST(PrimOp, eq_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x = "x";
  std::string y = "y";
  std::string z = "z";

  NewVar(block, x, shape);
  NewVar(block, y, shape);
  AppendOp(block, "eq_p", {{"X", {x}}, {"Y", {y}}}, {{"Z", {z}}}, {});
  ASSERT_EQ(block->Var("z")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("z")->GetDataType(), proto::VarType::BOOL);
  auto shapes = block->Var("z")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

TEST(PrimOp, pow_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x = "x";
  std::string y = "y";
  std::string z = "z";

  NewVar(block, x, shape);
  NewVar(block, y, shape);
  AppendOp(block, "pow_p", {{"X", {x}}, {"Y", {y}}}, {{"Z", {z}}}, {});
  ASSERT_EQ(block->Var("z")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("z")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("z")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
TEST(PrimOp, max_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{2, 3, 4};

  std::string x = "x";
  std::string y = "y";
  std::string z = "z";

  NewVar(block, x, shape);
  NewVar(block, y, shape);

  AppendOp(block, "max_p", {{"X", {x}}, {"Y", {y}}}, {{"Z", {z}}}, {});
  ASSERT_EQ(block->Var("z")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("z")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("z")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 2L);
  ASSERT_EQ(shapes[1], 3L);
  ASSERT_EQ(shapes[2], 4L);
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
TEST(PrimOp, erf_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::vector<int64_t> shape{3, 4, 5};

  std::string x0 = "x0";
  std::string x1 = "x1";

  NewVar(block, x0, shape);
  AppendOp(block, "erf_p", {{"X", {x0}}}, {{"Y", {x1}}}, {});
  ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x1")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
TEST(PrimOp, bernoulli_p) {
  ProgramDesc program;
  auto *block = program.MutableBlock(0);
  std::string x0 = "x0";

  AppendOp(block,
           "bernoulli_p",
           {{}},
           {{"Y", {x0}}},
           {{"p", 0.5f},
            {"dtype", proto::VarType_Type_FP32},
            {"shape", std::vector<int64_t>{3, 4, 5}}});
  ASSERT_EQ(block->Var("x0")->GetType(), proto::VarType::LOD_TENSOR);
  ASSERT_EQ(block->Var("x0")->GetDataType(), proto::VarType_Type_FP32);
  auto shapes = block->Var("x0")->GetShape();
  ASSERT_EQ(shapes.size(), 3UL);
  ASSERT_EQ(shapes[0], 3L);
  ASSERT_EQ(shapes[1], 4L);
  ASSERT_EQ(shapes[2], 5L);
}

L
levi131 已提交
755 756
}  // namespace framework
}  // namespace paddle