pool_mkldnn_op.cc 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

21 22
using framework::DataLayout;
using mkldnn::memory;
23
using mkldnn::pooling_backward;
24 25 26 27 28
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
29 30 31

// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
M
mozga-intel 已提交
32 33 34 35 36 37 38
static std::string gethash(const memory::dims& input_dims,
                           const std::string& pooling_type,
                           const std::vector<int>& ksize,
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::string& suffix) {
  auto dims2str = [](const memory::dims& operand_dims) {
39 40 41 42 43 44 45 46 47 48
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dims2str(input_dims) + dims2str(ksize) + dims2str(strides) +
         dims2str(paddings) + pooling_type + suffix;
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

63 64 65
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

91 92 93
    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

94 95 96 97 98 99 100 101
    const std::string key = gethash(src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Output("Out"));
    const std::string key_pool_p = key + "@pool_p";
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
102

103 104 105
    auto pool_p =
        std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
    if (pool_p == nullptr) {
106 107
      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), input_format);
108

109 110 111 112 113 114
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */
      auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32,
                                            mkldnn::memory::format::any);
115

116
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
117 118 119 120 121 122 123 124 125 126 127 128
          CreatePrimitiveDesc(src_md, dst_md, strides, paddings, ksize,
                              pooling_type, mkldnn_engine);

      // save pool_pd into global device context to be referred in backward path
      dev_ctx.SetBlob(key_pool_pd, pool_pd);

      std::shared_ptr<mkldnn::memory> workspace_memory =
          CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);

      // save pool_workspace_memory to be referred in backward path
      dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);

129 130 131 132
      auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
                                                 to_void_cast<T>(input_data));
      auto dst_memory =
          std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
133

134 135 136 137 138 139
      dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);

      pool_p = std::make_shared<pooling_forward>(*pool_pd, *(src_memory.get()),
                                                 *(dst_memory.get()),
                                                 *workspace_memory);
140 141

      dev_ctx.SetBlob(key_pool_p, pool_p);
142 143 144

      output_format =
          (memory::format)dst_memory->get_primitive_desc().desc().data.format;
145 146 147 148 149 150 151 152 153 154
    } else {
      // Primitives already exist
      auto pool_src_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(pool_src_memory_p != nullptr,
                     "Fail to find pooling src mem_p in device context");
      auto pool_dst_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
      PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
                     "Fail to find pooling dst mem_p in device context");
155
      pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
156
      pool_dst_memory_p->set_data_handle(output_data);
157 158 159 160

      output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
                          .desc()
                          .data.format;
161
    }
162 163

    // push primitive to stream and wait until it's executed
164
    std::vector<mkldnn::primitive> pipeline{*(pool_p.get())};
165 166 167 168
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  }

 private:
  std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
      const std::vector<int>& stride, const std::vector<int>& padding,
      const std::vector<int>& kernel, const std::string& pooling_type,
      const mkldnn::engine& engine) const {
    auto pool_desc = mkldnn::pooling_forward::desc(
        mkldnn::prop_kind::forward,
        pooling_type == "max" ? mkldnn::algorithm::pooling_max
                              : mkldnn::algorithm::pooling_avg,
        src, dst, stride, kernel, padding, padding, mkldnn::padding_kind::zero);

    auto p_pool_pd =
        new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
    return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
  }

  std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
      const std::string& pooling_type, const mkldnn::engine& engine) const {
    mkldnn::memory::primitive_desc workspace_md =
        pooling_type == "max"
            ? pool_pd->workspace_primitive_desc()
194 195 196 197
            : mkldnn::memory::primitive_desc({{},
                                              platform::MKLDNNGetDataType<T>(),
                                              mkldnn::memory::format::nchw},
                                             engine);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    auto p_workspace_memory = new mkldnn::memory(workspace_md);
    return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

215 216 217 218 219 220 221
    PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
                       in_x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input X tensor");
    PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
                       out_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input output_grad tensor");

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();

    const T* out_grad_data = out_grad->data<T>();
    T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
240
    memory::format in_x_grad_format{memory::format::format_undef};
241 242 243 244 245 246

    std::vector<int> diff_src_tz =
        paddle::framework::vectorize2int(in_x_grad->dims());
    std::vector<int> diff_dst_tz =
        paddle::framework::vectorize2int(out_grad->dims());

247 248 249 250 251 252 253
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
    const std::string key = gethash(diff_src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Input("Out"));
    const std::string key_pool_bwd_p = key + "@pool_bwd_p";
    const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p";
    const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p";
254 255
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
256 257 258
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()},
                mkldnn_engine},
               to_void_cast<T>(out_grad_data));

    std::shared_ptr<memory> diff_src_memory;
    std::shared_ptr<memory> diff_dst_memory;
    auto dst_memory =
        std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find dst_memory in device context");

    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
274 275 276
    auto pool_bwd_p = std::static_pointer_cast<pooling_backward>(
        dev_ctx.GetBlob(key_pool_bwd_p));
    if (pool_bwd_p == nullptr) {
277 278 279 280 281
      // Retrieve src_memory/dst_memory saved in forward pass
      auto src_memory =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(src_memory != nullptr,
                     "Fail to find src_memory in device context");
282 283 284 285 286 287
      // Retrieve pool_pd/pool_workspace_memory from device context
      auto pool_pd =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx.GetBlob(key_pool_pd));
      PADDLE_ENFORCE(pool_pd != nullptr,
                     "Fail to find pool_pd in device context");
288
      auto workspace_memory = std::static_pointer_cast<memory>(
289 290 291 292
          dev_ctx.GetBlob(key_pool_workspace_memory));
      PADDLE_ENFORCE(workspace_memory != nullptr,
                     "Fail to find workspace_memory in device context");

293 294 295
      // create memory descriptors for pooling
      auto diff_src_md = src_memory.get()->get_primitive_desc().desc();
      auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc();
296 297 298 299 300 301 302 303 304

      auto pool_bwd_desc = mkldnn::pooling_backward::desc(
          pooling_type == "max" ? mkldnn::algorithm::pooling_max
                                : mkldnn::algorithm::pooling_avg,
          diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
          mkldnn::padding_kind::zero);
      auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
          pool_bwd_desc, mkldnn_engine, *pool_pd);

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
      // reorder between user_diff_dst and pool diff_dst if needed
      diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      diff_src_memory = std::make_shared<memory>(
          pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data);

      dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory);

321
      pool_bwd_p = std::make_shared<pooling_backward>(
322 323
          pool_bwd_pd, *(diff_dst_memory.get()), *workspace_memory,
          *(diff_src_memory));
324
      dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p);
325

326 327
    } else {
      // Primitives already exist
328
      diff_src_memory = std::static_pointer_cast<memory>(
329
          dev_ctx.GetBlob(key_pool_diff_src_mem_p));
330
      PADDLE_ENFORCE(diff_src_memory != nullptr,
331
                     "Fail to find pooling src mem_p in device context");
332
      diff_dst_memory = std::static_pointer_cast<memory>(
333
          dev_ctx.GetBlob(key_pool_diff_dst_mem_p));
334
      PADDLE_ENFORCE(diff_dst_memory != nullptr,
335
                     "Fail to find pooling dst mem_p in device context");
336 337 338 339 340 341 342 343 344 345 346 347

      diff_src_memory->set_data_handle(reinterpret_cast<void*>(in_x_grad_data));
      diff_dst_memory->set_data_handle(const_cast<T*>(out_grad_data));

      // reorder between user_diff_dst and pool diff_dst if needed
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }
348
    }
349

350 351 352 353
    in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
                           .desc()
                           .data.format;

354
    // push primitive to stream and wait until it's executed
355 356 357 358 359
    std::vector<mkldnn::primitive> pipeline;
    if (is_diff_dst_reordered) {
      pipeline.push_back(reorder_diff_dst);
    }
    pipeline.push_back(*(pool_bwd_p.get()));
360
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
361 362 363

    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
364 365 366 367 368 369
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

370 371
namespace ops = paddle::operators;

372
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
373
                   ops::PoolMKLDNNOpKernel<float>);
374
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
375
                   ops::PoolMKLDNNGradOpKernel<float>);