strided_slice_op.h 7.9 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {

static void StridedSliceFunctor(int* starts, int* ends, int* strides, int* axes,
                                int* reverse_axis, const framework::DDim dims,
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
    int axis_size = dims[axes[axis]];
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
    }

    if (ends[axis_index] < 0) {
      ends[axis_index] = ends[axis_index] + axis_size;
    }
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
        starts[axis_index] = starts[axis_index] + 1;
        ends[axis_index] = ends[axis_index] + 1;
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");
    auto out_dims = out->dims();
    auto in_dims = in->dims();

    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
    auto strides = context.Attr<std::vector<int>>("strides");
    auto axes = context.Attr<std::vector<int>>("axes");

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
                        reverse_vector.data(), in_dims, starts.size());

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

    framework::Tensor tmp;
    tmp.mutable_data<T>(out_dims, context.GetPlace());

    out->mutable_data<T>(context.GetPlace());
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto tmp_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            tmp);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *out, out_dims);
    tmp_t.device(place) =
        in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
    out_t.device(place) = tmp_t.reverse(reverse_axis);
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    size_t rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto* d_input =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_out =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_out->mutable_data<T>(context.GetPlace());

    auto& dev_ctx = context.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, d_out, static_cast<T>(0));
    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
    auto strides = context.Attr<std::vector<int>>("strides");
    auto axes = context.Attr<std::vector<int>>("axes");

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
                        reverse_vector.data(), out_dims, starts.size());

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

    framework::Tensor reverse_input;
    reverse_input.mutable_data<T>(in_dims, context.GetPlace());

    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto reverse_in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            reverse_input);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_out, out_dims);

    reverse_in_t.device(place) = in_t.reverse(reverse_axis);
    out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
        .device(place) = reverse_in_t;
  }
};
}  // namespace operators
}  // namespace paddle