api_custom_impl.cc 33.4 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "paddle/phi/api/lib/api_gen_utils.h"
18 19
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
20
#include "paddle/phi/api/lib/tensor_copy.h"
21
#include "paddle/phi/api/lib/utils/storage.h"
Z
zyfncg 已提交
22
#include "paddle/phi/common/type_traits.h"
23
#include "paddle/phi/core/compat/convert_utils.h"
24 25
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
26
#include "paddle/phi/infermeta/backward.h"
27 28 29
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
30
#include "paddle/phi/infermeta/unary.h"
31

32
#include "glog/logging.h"
33

34 35 36
namespace paddle {
namespace experimental {

C
chentianyu03 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> adam_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& learning_rate,
    const Tensor& moment1,
    const Tensor& moment2,
    const Tensor& beta1_pow,
    const Tensor& beta2_pow,
    paddle::optional<const Tensor&> master_param,
    paddle::optional<const Tensor&> skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "adam";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_lr = PrepareData(learning_rate, kernel.InputAt(2), {});
  auto input_moment1 = PrepareData(moment1, kernel.InputAt(3), {});
  auto input_moment2 = PrepareData(moment2, kernel.InputAt(4), {});
  auto input_beta1_pow = PrepareData(beta1_pow, kernel.InputAt(5), {});
  auto input_beta2_pow = PrepareData(beta2_pow, kernel.InputAt(6), {});
  paddle::optional<const phi::DenseTensor&> input_master_param(paddle::none);
  auto input_master_param_ptr =
      PrepareData(master_param, kernel.InputAt(7), {});
  paddle::optional<const phi::DenseTensor&> input_skip_update(paddle::none);
  auto input_skip_update_ptr = PrepareData(skip_update, kernel.InputAt(8), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_moment1.get();
  auto kernel_out_2 = input_moment2.get();
  auto kernel_out_3 = input_beta1_pow.get();
  auto kernel_out_4 = input_beta2_pow.get();
  phi::DenseTensor* kernel_out_5 = nullptr;
  if (input_master_param_ptr) {
    input_master_param =
        paddle::make_optional<const phi::DenseTensor&>(*input_master_param_ptr);
    kernel_out_5 =
        paddle::make_optional<phi::DenseTensor&>(*input_master_param_ptr)
            .get_ptr();
  }

  if (input_skip_update_ptr) {
    input_skip_update =
        paddle::make_optional<const phi::DenseTensor&>(*input_skip_update_ptr);
  }

  paddle::optional<const phi::MetaTensor&> input_meta_ref_master_param(
      paddle::none);
  phi::DenseTensor dt;
  phi::MetaTensor input_meta_tmp_master_param(dt);
  if (input_master_param_ptr) {
    input_meta_tmp_master_param.set_dtype(input_master_param_ptr->dtype());
    input_meta_tmp_master_param.set_dims(input_master_param_ptr->dims());
    input_meta_tmp_master_param.set_layout(input_master_param_ptr->layout());
    input_meta_ref_master_param = input_meta_tmp_master_param;
  }

  paddle::optional<const phi::MetaTensor&> input_meta_ref_skip_update(
      paddle::none);
  phi::DenseTensor dt1;
  phi::MetaTensor input_meta_tmp_skip_update(dt1);
  if (input_skip_update_ptr) {
    input_meta_tmp_skip_update.set_dtype(input_skip_update_ptr->dtype());
    input_meta_tmp_skip_update.set_dims(input_skip_update_ptr->dims());
    input_meta_tmp_skip_update.set_layout(input_skip_update_ptr->layout());
    input_meta_ref_skip_update = input_meta_tmp_skip_update;
  }

  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::AdamInferMeta(MakeMetaTensor(*input_param),
                     MakeMetaTensor(*input_grad),
                     MakeMetaTensor(*input_lr),
                     MakeMetaTensor(*input_moment1),
                     MakeMetaTensor(*input_moment2),
                     MakeMetaTensor(*input_beta1_pow),
                     MakeMetaTensor(*input_beta2_pow),
                     input_meta_ref_master_param,
                     input_meta_ref_skip_update,
                     beta1,
                     beta2,
                     epsilon,
                     lazy_mode,
                     min_row_size_to_use_multithread,
                     multi_precision,
                     use_global_beta_pow,
                     &meta_out_0,
                     &meta_out_1,
                     &meta_out_2,
                     &meta_out_3,
                     &meta_out_4,
                     &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    paddle::optional<const phi::DenseTensor&>,
                                    paddle::optional<const phi::DenseTensor&>,
                                    const Scalar&,
                                    const Scalar&,
                                    const Scalar&,
                                    bool,
                                    int64_t,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_lr,
               *input_moment1,
               *input_moment2,
               *input_beta1_pow,
               *input_beta2_pow,
               input_master_param,
               input_skip_update,
               beta1,
               beta2,
               epsilon,
               lazy_mode,
               min_row_size_to_use_multithread,
               multi_precision,
               use_global_beta_pow,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2,
               kernel_out_3,
               kernel_out_4,
               kernel_out_5);

  return api_output;
}

218
////////////////// Forward api impls //////////////////////
219

H
hong 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
Tensor conv2d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(input);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv2d", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv2d API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});

  Tensor api_output;
  auto kernel_out = SetKernelOutput(kernel_backend, &api_output);
  phi::MetaTensor meta_out(kernel_out);

  phi::ConvInferMeta(MakeMetaTensor(*input_input),
                     MakeMetaTensor(*input_filter),
                     strides,
                     paddings,
                     paddding_algorithm,
                     groups,
                     dilations,
                     data_format,
                     use_addto,
                     workspace_size_MB,
                     exhaustive_search,
                     &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out);
  }

  return api_output;
}

std::vector<std::vector<Tensor>> conv2d_grad_impl(
    const Tensor& input,
    const Tensor& filter,
    const Tensor& out_grad,
    const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const std::string& paddding_algorithm,
    int groups,
    const std::vector<int>& dilations,
    const std::string& data_format,
    bool use_addto,
    int workspace_size_MB,
    bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter, out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv2d_grad", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv2d_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  phi::TensorArgDef args2 = kernel.InputAt(2);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
    args2.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});
  auto input_out_grad = PrepareData(out_grad, args2, {});

  std::vector<std::vector<Tensor>> api_output(2);
  api_output[0].emplace_back();
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &api_output[0][0]);
  api_output[1].emplace_back();
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &api_output[1][0]);
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);

  phi::GeneralBinaryGradInferMeta(MakeMetaTensor(*input_input),
                                  MakeMetaTensor(*input_filter),
                                  &meta_out_0,
                                  &meta_out_1);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 *input_out_grad,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out_0,
                 kernel_out_1);
  }

  return api_output;
}

427
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
428
  Tensor out;
429
  copy(x, place, blocking, &out);
430 431 432
  return out;
}

433
std::vector<Tensor> split_impl(const Tensor& x,
434
                               const IntArray& num_or_sections,
435 436
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
437
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
438 439 440 441

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
442

443
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
444 445 446 447 448 449 450 451 452 453 454
      "split", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
455
  if (num_or_sections.size() == 1) {
C
chentianyu03 已提交
456 457
    out_number = num_or_sections.GetData()[0];
  } else {
458
    out_number = num_or_sections.size();
C
chentianyu03 已提交
459 460 461 462
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
463
  std::vector<phi::MetaTensor> meta_outs;
464 465 466
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
467 468
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
469
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
470 471
  }

472
  phi::SplitInferMeta(
473
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
474 475

  using kernel_signature = void (*)(const platform::DeviceContext&,
476
                                    const phi::DenseTensor&,
477
                                    const phi::IntArray&,
478 479
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
480 481 482
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
483
               phi::IntArray(num_or_sections),
484
               phi::Scalar(axis),
C
chentianyu03 已提交
485 486 487 488
               dense_outs);

  return out;
}
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
    paddle::optional<const Tensor&> master_param,
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "momentum";
  if (grad.is_selected_rows()) {
    kernel_name = "momentum_dense_param_sparse_grad";
  }
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_velocity = PrepareData(velocity, kernel.InputAt(2), {});
  auto input_learning_rate = PrepareData(learning_rate, kernel.InputAt(3), {});
  paddle::optional<const phi::DenseTensor&> input_master_param(paddle::none);
  auto input_master_param_ptr =
      PrepareData(master_param, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_velocity.get();
  phi::DenseTensor* kernel_out_2 = nullptr;
  if (input_master_param_ptr) {
    input_master_param =
        paddle::make_optional<const phi::DenseTensor&>(*input_master_param_ptr);
    kernel_out_2 =
        paddle::make_optional<phi::DenseTensor&>(*input_master_param_ptr)
            .get_ptr();
  }

  paddle::optional<const phi::MetaTensor&> input_meta_ref_master_param(
      paddle::none);
  phi::DenseTensor dt;
  phi::MetaTensor input_meta_tmp_master_param(dt);
  if (input_master_param_ptr) {
    input_meta_tmp_master_param.set_dtype(input_master_param_ptr->dtype());
    input_meta_tmp_master_param.set_dims(input_master_param_ptr->dims());
    input_meta_tmp_master_param.set_layout(input_master_param_ptr->layout());
    input_meta_ref_master_param = input_meta_tmp_master_param;
  }
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  if (kernel_out_2) {
    phi::MetaTensor meta_out_2(kernel_out_2);
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           &meta_out_2);
  } else {
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           nullptr);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    paddle::optional<const phi::DenseTensor&>,
                                    float,
                                    bool,
                                    const std::string&,
                                    float,
                                    bool,
                                    float,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_velocity,
               *input_learning_rate,
               input_master_param,
               mu,
               use_nesterov,
               regularization_method,
               regularization_coeff,
               multi_precision,
               rescale_grad,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2);

  return api_output;
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
////////////////// Backward(grad) api impls //////////////////////

// TODO(chenweihang):  the original sum grad op can support higher-level
// differentiation,
// but if we use this impl, it will not support. We need to be able to reuse
// the autograd API here, which is not yet implemented
// TODO(chenweihang): we should support call generated api in custom api impl
std::vector<Tensor> add_n_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "add_n_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "add_n_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(0), {});

  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::Scalar&,
                                    float,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  for (auto* dense_x_grad_t : dense_x_grad) {
    phi::MetaTensor meta_out(dense_x_grad_t);
    phi::UnchangedInferMeta(MakeMetaTensor(*dense_out_grad), &meta_out);
    (*kernel_fn)(
        *dev_ctx, *dense_out_grad, phi::Scalar(1.0), 0.0, true, dense_x_grad_t);
  }

  return x_grad;
}

H
hong 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(x);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "batch_norm", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "batch_norm API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "batch_norm API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x = PrepareData(x, kernel.InputAt(0), {});
  auto input_scale = PrepareData(scale, kernel.InputAt(1), {});
  auto input_bias = PrepareData(bias, kernel.InputAt(2), {});
  auto input_mean = PrepareData(mean, kernel.InputAt(3), {});
  auto input_variance = PrepareData(variance, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &std::get<0>(api_output));
  std::get<1>(api_output).set_impl(mean.impl());
  std::get<2>(api_output).set_impl(variance.impl());
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &std::get<1>(api_output));
  auto kernel_out_2 = SetKernelOutput(kernel_backend, &std::get<2>(api_output));
  auto kernel_out_3 = SetKernelOutput(kernel_backend, &std::get<3>(api_output));
  auto kernel_out_4 = SetKernelOutput(kernel_backend, &std::get<4>(api_output));
  auto kernel_out_5 = SetKernelOutput(kernel_backend, &std::get<5>(api_output));
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::BatchNormInferMeta(MakeMetaTensor(*input_x),
                          MakeMetaTensor(*input_scale),
                          MakeMetaTensor(*input_bias),
                          MakeMetaTensor(*input_mean),
                          MakeMetaTensor(*input_variance),
                          momentum,
                          epsilon,
                          data_layout,
                          is_test,
                          use_global_stats,
                          trainable_statistics,
                          fuse_with_relu,
                          &meta_out_0,
                          &meta_out_1,
                          &meta_out_2,
                          &meta_out_3,
                          &meta_out_4,
                          &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    float,
                                    float,
                                    const std::string&,
                                    bool,
                                    bool,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  {
    (*kernel_fn)(*dev_ctx,
                 *input_x,
                 *input_scale,
                 *input_bias,
                 *input_mean,
                 *input_variance,
                 momentum,
                 epsilon,
                 data_layout,
                 is_test,
                 use_global_stats,
                 trainable_statistics,
                 fuse_with_relu,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }

  return api_output;
}

Z
zyfncg 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
Tensor imag_grad_impl(const Tensor& out_grad) {
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "imag_grad", kernel_key);

  VLOG(6) << "imag_grad API kernel key: " << kernel_key;
  VLOG(6) << "imag_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

  Tensor out;
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);

  return out;
}

Tensor real_grad_impl(const Tensor& out_grad) {
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "real_grad", kernel_key);

  VLOG(6) << "real_grad API kernel key: " << kernel_key;
  VLOG(6) << "real_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

  Tensor out;
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);

  return out;
}

866 867
}  // namespace experimental
}  // namespace paddle