pyramid_hash_op.cc 20.6 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <xxhash.h>
#include <algorithm>
#include <cmath>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/search_compute.h"

extern "C" {
#include "math/bloomfilter.h"
}

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

class PyramidHashOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "X (Tensor, MUST be Tensor<!!!_int32_!!!>) Input variable which "
             "should contain lod information.");
    AddInput("W", "W (Tensor)");
    AddInput("WhiteList", "WhiteList (Tensor)");
    AddInput("BlackList", "BlackList (Tensor)");
    AddAttr<int>("num_emb", "num_emb").SetDefault(0).EqualGreaterThan(0);
    AddAttr<int>("space_len", "space_len").SetDefault(0).EqualGreaterThan(0);
    AddAttr<int>("pyramid_layer", "pyramid_layer (must be >= 2)")
        .SetDefault(2)
        .EqualGreaterThan(2);
    AddAttr<int>("rand_len", "rand_len").SetDefault(0).EqualGreaterThan(0);
    AddAttr<float>("drop_out_percent", "drop_out_percent")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddAttr<int>("is_training", "is_training")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddAttr<bool>("use_filter", "use_filter").SetDefault(true);
    AddAttr<int>("white_list_len", "white_list_len")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddAttr<int>("black_list_len", "black_list_len")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddAttr<int>("seed", "seed").SetDefault(0).EqualGreaterThan(0);
    AddAttr<float>("lr", "learning rate").SetDefault(0.0).EqualGreaterThan(0.0);
C
Chengmo 已提交
62 63 64 65 66 67
    AddAttr<std::string>(
        "distribute_update_vars",
        "['PyramidHash_emb_0','Filter']"
        "Decided which params should be updated in distribute training. "
        "Used in Distribute Transpiler to create a trainer/server program.")
        .SetDefault("");
A
Aurelius84 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    AddOutput("Out", "Out (Tensor, default Tensor<float>) Output variable");
    AddOutput("DropPos", "Out (Tensor, Tensor<int>) Output variable");
    AddOutput("X_Temp_Out", "Out (Tensor, Tensor<int>) Output variable")
        .AsIntermediate();

    AddComment(R"DOC(
      PyramidHash

      NOTE: only support 'float32' data type now.

    )DOC");
  }
};

class PyramidHashOP : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
87 88 89 90 91 92
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of PyramidHashOP is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("W"), true,
        platform::errors::NotFound("Input(W) of PyramidHashOP is not found."));
A
Aurelius84 已提交
93
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
94 95
                      platform::errors::NotFound(
                          "Output(Out) of PyramidHashOP is not found."));
A
Aurelius84 已提交
96
    PADDLE_ENFORCE_EQ(ctx->HasOutput("DropPos"), true,
97 98
                      platform::errors::NotFound(
                          "Output(DropPos) of PyramidHashOP is not found."));
A
Aurelius84 已提交
99 100

    auto x_dims = ctx->GetInputDim("X");
101 102 103 104 105
    PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The rank of Input(X) of PyramidHashOP is invalid. "
                          "It should be 2, but got %d",
                          x_dims.size()));
A
Aurelius84 已提交
106 107

    auto w_dims = ctx->GetInputDim("W");
108 109 110 111 112
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The rank of Input(W) of PyramidHashOP is invalid. "
                          "It should be 2, but got %d",
                          w_dims.size()));
A
Aurelius84 已提交
113 114 115 116

    int space_len = ctx->Attrs().Get<int>("space_len");
    int rand_len = ctx->Attrs().Get<int>("rand_len");

117 118 119 120 121 122 123 124 125 126 127 128
    PADDLE_ENFORCE_EQ(
        w_dims[0], space_len + rand_len,
        platform::errors::InvalidArgument(
            "The first dimension of Input(W) of PyramidHashOP is invalid. "
            "It should be space_len + rand_len, but now %d != %d + %d",
            w_dims[0], space_len, rand_len));
    PADDLE_ENFORCE_EQ(
        w_dims[1], 1,
        platform::errors::InvalidArgument(
            "The second dimension of Input(W) of PyramidHashOP is invalid."
            " It should be 1, but got %d",
            w_dims[1]));
A
Aurelius84 已提交
129 130

    int num_emb = ctx->Attrs().Get<int>("num_emb");
131 132 133 134 135 136
    PADDLE_ENFORCE_EQ(
        num_emb % rand_len, 0,
        platform::errors::InvalidArgument(
            "The PyramidHashOP's Attr(num_emb) should mod Attr(rand_len), "
            "but num_emb is %d, rand_len is %d",
            num_emb, rand_len));
A
Aurelius84 已提交
137 138 139 140 141

    int white_list_len = ctx->Attrs().Get<int>("white_list_len");
    if (white_list_len > 0) {
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("WhiteList"), true,
142 143
          platform::errors::NotFound("Input(WhiteList) of PyramidHashOP is not "
                                     "found but white_list_len > 0."));
A
Aurelius84 已提交
144
      auto wl_dims = ctx->GetInputDim("WhiteList");
145 146 147 148 149 150
      PADDLE_ENFORCE_EQ(
          wl_dims.size(), 2,
          platform::errors::InvalidArgument(
              "The rank of Input(WhiteList) of PyramidHashOP is invalid."
              " It should be 2, but got %d",
              wl_dims.size()));
A
Aurelius84 已提交
151
      PADDLE_ENFORCE_EQ(wl_dims[0], white_list_len,
152 153 154 155 156 157 158 159 160 161 162 163
                        platform::errors::InvalidArgument(
                            "The first dimension of Input(WhiteList) of "
                            "PyramidHashOP is invalid."
                            " It should be equal to Attr(white_list_len) "
                            ", but first dimension is %d, white_list_len is %d",
                            wl_dims[0], white_list_len));
      PADDLE_ENFORCE_EQ(wl_dims[1], 1,
                        platform::errors::InvalidArgument(
                            "The second dimension of Input(WhiteList) of "
                            "PyramidHashOP is invalid."
                            " It should be 1, but got %d",
                            wl_dims[1]));
A
Aurelius84 已提交
164 165 166 167 168 169
    }

    int black_list_len = ctx->Attrs().Get<int>("black_list_len");
    if (black_list_len > 0) {
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("BlackList"), true,
170 171
          platform::errors::NotFound("Input(BlackList) of PyramidHashOP is not "
                                     "found but black_list_len > 0."));
A
Aurelius84 已提交
172
      auto bl_dims = ctx->GetInputDim("BlackList");
173 174 175 176 177 178
      PADDLE_ENFORCE_EQ(
          bl_dims.size(), 2,
          platform::errors::InvalidArgument(
              "The rank of Input(BlackList) of PyramidHashOP is invalid."
              " It should be 2, but got %d",
              bl_dims.size()));
A
Aurelius84 已提交
179
      PADDLE_ENFORCE_EQ(bl_dims[0], black_list_len,
180 181 182 183 184 185 186 187 188 189 190 191
                        platform::errors::InvalidArgument(
                            "The first dimension of Input(BlackList) of "
                            "PyramidHashOP is invalid."
                            " It should be equal to Attr(black_list_len)"
                            ", but first dimension is %d, black_list_len is %d",
                            bl_dims[0], black_list_len));
      PADDLE_ENFORCE_EQ(bl_dims[1], 1,
                        platform::errors::InvalidArgument(
                            "The second dimension of Input(BlackList) of "
                            "PyramidHashOP is invalid."
                            " It should be 1, but got %d",
                            bl_dims[1]));
A
Aurelius84 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    }

    if (ctx->IsRuntime()) {
      // something to do in runtime.
    } else {
      // compile time
      ctx->SetOutputDim("Out", framework::make_ddim({-1, num_emb}));
      ctx->SetOutputDim("X_Temp_Out", x_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "W"), ctx.GetPlace());
  }
};

template <typename DeviceContext, typename T>
class CPUPyramidHashOPKernel : public framework::OpKernel<T> {
 public:
  bool should_use_term(math::bloomfilter* _filter,
216
                       math::bloomfilter* _black_filter, const float* word_repr,
A
Aurelius84 已提交
217 218
                       int len) const {
    return (!_filter ||
219 220
            1 == math::bloomfilter_get(_filter, word_repr,
                                       len * sizeof(float))) &&
A
Aurelius84 已提交
221 222
           (!_black_filter ||
            0 == math::bloomfilter_get(_black_filter, word_repr,
223
                                       len * sizeof(float)));
A
Aurelius84 已提交
224 225
  }

226
  void hash_embedding_ff(const float* hash_id, int len, T* top_pos,
A
Aurelius84 已提交
227 228
                         const T* weights, int _num_emb, int _rand_len,
                         int _space_len) const {
229 230 231
    unsigned int pos1 = XXH32(hash_id, len * sizeof(float), 0) % _space_len;
    unsigned int pos2 =
        XXH32(hash_id, len * sizeof(float), _rand_len) % _space_len;
232

233
    for (int j = 0; j != _num_emb; j += _rand_len) {
234 235 236
      if (j + _rand_len < _num_emb) {
        __builtin_prefetch(weights + pos2);
        __builtin_prefetch(top_pos + j + _rand_len);
237
      }
238 239

      unsigned int pos3 =
240 241
          XXH32(hash_id, len * sizeof(float), j + 2 * _rand_len) % _space_len;
      memcpy(top_pos + j, const_cast<T*>(weights + pos1),
242 243 244
             _rand_len * sizeof(T));
      pos1 = pos2;
      pos2 = pos3;
A
Aurelius84 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* bottom = ctx.Input<LoDTensor>("X");
    auto* _blobs_0 = ctx.Input<Tensor>("W");
    auto* _blobs_1 = ctx.Input<Tensor>("WhiteList");
    auto* _blobs_2 = ctx.Input<Tensor>("BlackList");
    auto* top = ctx.Output<LoDTensor>("Out");
    auto* drop_pos = ctx.Output<LoDTensor>("DropPos");

    int _num_emb = ctx.Attr<int>("num_emb");
    bool use_filter = ctx.Attr<bool>("use_filter");
    int white_list_len = ctx.Attr<int>("white_list_len");
    int black_list_len = ctx.Attr<int>("black_list_len");
    int _pyramid_layer = ctx.Attr<int>("pyramid_layer");
    int _is_training = ctx.Attr<int>("is_training");
    int seed = ctx.Attr<int>("seed");
    unsigned int _seed = (unsigned int)seed;
    int _rand_len = ctx.Attr<int>("rand_len");
    int _space_len = ctx.Attr<int>("space_len");
    float _drop_out_percent = ctx.Attr<float>("drop_out_percent");

    const auto& offset = bottom->lod()[0];
    const auto* bottom_data_ori = bottom->data<int32_t>();
    auto* buff = ctx.Output<LoDTensor>("X_Temp_Out");
    buff->Resize(framework::make_ddim({bottom->dims()[0], bottom->dims()[1]}));
272
    float* bottom_data = buff->mutable_data<float>(ctx.GetPlace());
273
    for (int i = 0; i < bottom->dims()[0]; i++) {
A
Aurelius84 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286
      bottom_data[i] = bottom_data_ori[i];
    }

    const auto* weights = _blobs_0->data<T>();

    std::vector<size_t> top_offset;
    top_offset.resize(offset.size());
    top_offset[0] = 0;

    math::bloomfilter* _filter = NULL;
    math::bloomfilter* _black_filter = NULL;
    if (use_filter) {
      if (white_list_len != 0) {
287
        _filter = (math::bloomfilter*)_blobs_1->data<float>();
A
Aurelius84 已提交
288 289 290 291
        PADDLE_ENFORCE_EQ(math::bloomfilter_check(_filter), 1,
                          "white filter not load");
      }
      if (black_list_len != 0) {
292
        _black_filter = (math::bloomfilter*)_blobs_2->data<float>();
A
Aurelius84 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305
        PADDLE_ENFORCE_EQ(math::bloomfilter_check(_black_filter), 1,
                          "black filter not load");
      }
    }

    drop_pos->Resize(framework::make_ddim(
        {bottom->dims()[0] * bottom->dims()[1] * _pyramid_layer, 1}));
    std::vector<size_t> drop_pos_offset;
    drop_pos_offset.resize(offset.size());
    drop_pos_offset[0] = 0;
    int* iter = drop_pos->mutable_data<int>(ctx.GetPlace());
    int* iter_end = iter;

306
    for (size_t i = 0; i < top_offset.size() - 1; ++i) {
A
Aurelius84 已提交
307 308 309 310 311 312 313 314
      int w = offset[i + 1] - offset[i];
      int nsentense_with_pyramid = 0;
      if (w < 2) {
        nsentense_with_pyramid = 0;
      } else {
        for (int ilayer = 1; ilayer < _pyramid_layer && ilayer < w; ++ilayer) {
          for (int l = 0; l < w - ilayer; ++l) {
            if (should_use_term(_filter, _black_filter,
315
                                (const float*)(bottom_data + offset[i] + l),
A
Aurelius84 已提交
316 317 318
                                ilayer + 1)) {
              if (_is_training != 0) {
                unsigned int rand_val = rand_r(&_seed);
319
                float rate = static_cast<float>(rand_val) / (RAND_MAX);
A
Aurelius84 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
                *(iter_end++) = (rate < _drop_out_percent ? 0 : 1);
              } else {
                *(iter_end++) = 1;
              }
            } else {
              *(iter_end++) = 0;
            }
          }
        }
        nsentense_with_pyramid = std::count(iter, iter_end, 1);
        iter = iter_end;
      }
      drop_pos_offset[i + 1] = drop_pos_offset[i] + nsentense_with_pyramid;
      top_offset[i + 1] =
          top_offset[i] +
          (nsentense_with_pyramid == 0 ? 1 : nsentense_with_pyramid);
    }

    int top_l = top_offset[top_offset.size() - 1];

    framework::LoD top_lod;
    top_lod.push_back(top_offset);
    top->set_lod(top_lod);
    top->Resize(framework::make_ddim({top_l, _num_emb}));
    auto* top_data = top->mutable_data<T>(ctx.GetPlace());

    framework::LoD drop_pos_lod;
    drop_pos_lod.push_back(drop_pos_offset);
    drop_pos->set_lod(drop_pos_lod);

    iter = drop_pos->mutable_data<int>(ctx.GetPlace());
    int top_counter = 0;
352
    for (size_t i = 0; i < offset.size() - 1; ++i) {
A
Aurelius84 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
      int w_drop = drop_pos_offset[i + 1] - drop_pos_offset[i];
      int w = offset[i + 1] - offset[i];
      if (w_drop == 0) {
        if (w >= 2) {
          for (int ilayer = 1; ilayer < _pyramid_layer && ilayer < w;
               ++ilayer) {
            for (int l = 0; l < w - ilayer; ++l) {
              iter++;
            }
          }
        }
        auto* top_pos = top_data + top_counter++ * _num_emb;
        memset(top_pos, 0, _num_emb * sizeof(T));
        continue;
      }
      if (w >= 2) {
        for (int ilayer = 1; ilayer < _pyramid_layer && ilayer < w; ++ilayer) {
          for (int l = 0; l < w - ilayer; ++l) {
            if (*(iter++) == 0) {
              // do nothing
            } else {
              auto* top_pos = top_data + top_counter++ * _num_emb;
375
              hash_embedding_ff((const float*)(bottom_data + offset[i] + l),
A
Aurelius84 已提交
376 377 378 379 380 381 382 383 384 385
                                ilayer + 1, top_pos, weights, _num_emb,
                                _rand_len, _space_len);
            }
          }
        }
      }
    }
    if (iter != iter_end) {
      exit(1);
    }
386 387
    auto weight_type = _blobs_0->type();
    if (_is_training == 0 && weight_type != framework::proto::VarType::INT8) {
A
Aurelius84 已提交
388 389 390 391 392 393 394 395 396 397 398
      avx_axpy_noadd(top_data, top_data, top->dims()[0] * top->dims()[1],
                     _drop_out_percent);
    }
  }
};

class PyramidHashOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
399 400 401 402 403 404
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::NotFound(
                          "Input(X) of PyramidHashOpGrad is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                      platform::errors::NotFound(
                          "Input(W) of PyramidHashOpGrad is not found."));
A
Aurelius84 已提交
405
    PADDLE_ENFORCE_EQ(ctx->HasInput("DropPos"), true,
406 407 408 409 410 411
                      platform::errors::NotFound(
                          "Input(DropPos) of PyramidHashOpGrad is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X_Temp_Out"), true,
        platform::errors::NotFound(
            "Input(X_Temp_Out) of PyramidHashOpGrad is not found."));
A
Aurelius84 已提交
412 413
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
414 415
        platform::errors::NotFound(
            "Input(Out@Grad) of PyramidHashOpGrad is not found."));
A
Aurelius84 已提交
416 417 418 419 420 421 422 423 424 425
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "W"), ctx.GetPlace());
  }
};

H
hong 已提交
426 427
template <typename T>
class PyramidHashGradOpMaker : public framework::SingleGradOpMaker<T> {
A
Aurelius84 已提交
428
 public:
H
hong 已提交
429
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
A
Aurelius84 已提交
430 431

 protected:
H
hong 已提交
432 433
  std::unique_ptr<T> Apply() const override {
    auto* op_desc_ptr = new T();
A
Aurelius84 已提交
434
    op_desc_ptr->SetType("pyramid_hash_grad");
H
hong 已提交
435 436 437
    op_desc_ptr->SetInput("X", this->Input("X"));
    op_desc_ptr->SetInput("W", this->Input("W"));
    op_desc_ptr->SetInput("DropPos", this->Output("DropPos"));
438
    op_desc_ptr->SetInput("X_Temp_Out", this->Output("X_Temp_Out"));
H
hong 已提交
439 440 441 442 443 444

    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op_desc_ptr->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(op_desc_ptr);
A
Aurelius84 已提交
445 446 447 448 449 450 451 452 453
  }
};

template <typename DeviceContext, typename T>
class CPUPyramidHashOPGradKernel : public framework::OpKernel<T> {
 public:
  void hash_embedding_bp(const T* hash_id, int len, const T* top_pos,
                         T* weights, T mlr, int _num_emb, int _rand_len,
                         int _space_len) const {
454
    for (int j = 0; j != _num_emb; j += _rand_len) {
A
Aurelius84 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
      unsigned int pos = XXH32(hash_id, len * sizeof(T), j) % _space_len;
      avx_axpy(top_pos + j, weights + pos, _rand_len, mlr);
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* bottom = ctx.Input<LoDTensor>("X");
    auto* _blobs = ctx.Input<Tensor>("W");
    auto* drop_pos = ctx.Input<LoDTensor>("DropPos");
    auto* top = ctx.Input<LoDTensor>(framework::GradVarName("Out"));

    int _num_emb = ctx.Attr<int>("num_emb");
    float _lr = ctx.Attr<float>("lr");
    int _rand_len = ctx.Attr<int>("rand_len");
    int _space_len = ctx.Attr<int>("space_len");
    int _pyramid_layer = ctx.Attr<int>("pyramid_layer");

472 473
    auto* buff = ctx.Input<LoDTensor>("X_Temp_Out");
    auto* bottom_data = buff->data<T>();
A
Aurelius84 已提交
474 475

    int _slot_len = bottom->dims()[0];
476
    if (static_cast<size_t>(_slot_len) == bottom->lod()[0].size() - 1 &&
A
Aurelius84 已提交
477 478 479 480 481 482 483 484
        std::count(bottom_data, bottom_data + _slot_len, -1) == _slot_len) {
      return;
    }

    auto& offset = bottom->lod()[0];
    auto& drop_pos_offset = drop_pos->lod()[0];

    const auto* top_diff = top->data<T>();
485
    // in-place update weight, so need const_cast
A
Aurelius84 已提交
486 487 488 489 490
    T* weights = const_cast<T*>(_blobs->data<T>());
    T mlr = -1.0 * _lr;

    const int* iter = drop_pos->data<int>();
    int top_counter = 0;
491
    for (size_t i = 0; i < offset.size() - 1; ++i) {
A
Aurelius84 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
      int w = offset[i + 1] - offset[i];
      int w_drop = drop_pos_offset[i + 1] - drop_pos_offset[i];
      if (w_drop == 0) {
        top_counter++;
      }
      if (w > 1) {
        for (int ilayer = 1; ilayer < _pyramid_layer && ilayer < w; ++ilayer) {
          for (int l = 0; l < w - ilayer; ++l) {
            if (*(iter++) == 0) {
              // do nothing
            } else {
              const T* top_pos = top_diff + top_counter++ * _num_emb;
              hash_embedding_bp((const T*)(bottom_data + offset[i] + l),
                                ilayer + 1, top_pos, weights, mlr, _num_emb,
                                _rand_len, _space_len);
            }
          }
        }
      } else {
        // do nothing
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plt = paddle::platform;
namespace frm = paddle::framework;
REGISTER_OPERATOR(pyramid_hash, ops::PyramidHashOP, ops::PyramidHashOpMaker,
H
hong 已提交
524 525
                  ops::PyramidHashGradOpMaker<paddle::framework::OpDesc>,
                  ops::PyramidHashGradOpMaker<paddle::imperative::OpBase>);
A
Aurelius84 已提交
526 527 528
REGISTER_OPERATOR(pyramid_hash_grad, ops::PyramidHashOpGrad);

REGISTER_OP_CPU_KERNEL(
529 530 531
    pyramid_hash, ops::CPUPyramidHashOPKernel<plt::CPUDeviceContext, float>,
    ops::CPUPyramidHashOPKernel<plt::CPUDeviceContext, double>,
    ops::CPUPyramidHashOPKernel<plt::CPUDeviceContext, int8_t>);
A
Aurelius84 已提交
532 533
REGISTER_OP_CPU_KERNEL(
    pyramid_hash_grad,
534 535
    ops::CPUPyramidHashOPGradKernel<plt::CPUDeviceContext, float>,
    ops::CPUPyramidHashOPGradKernel<plt::CPUDeviceContext, double>);