center_loss_op.cc 5.9 KB
Newer Older
H
HaoRen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/center_loss_op.h"
#include <memory>
#include <string>

namespace paddle {
namespace operators {
class CenterLossOp : public framework::OperatorWithKernel {
 public:
  CenterLossOp(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of CenterLoss should not be null.");
    auto x_dims = ctx->GetInputDim("X");

    PADDLE_ENFORCE(ctx->HasInput("CenterUpdateRate"),
                   "Input(CenterUpdateRate) of CenterLoss should not be null.");

    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of CenterLoss should not be null.");

    PADDLE_ENFORCE(ctx->HasInput("Centers"),
                   "Input(Centers) of CenterLoss should not be null.");

    PADDLE_ENFORCE(
        ctx->HasOutput("SampleCenterDiff"),
        "Output(SampleCenterDiff) of CenterLoss should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of CenterLoss should not be null.");

    PADDLE_ENFORCE(
        ctx->HasOutput("CentersOut"),
        "Output(CentersOut) of CenterLoss shared data with Centers.");

    ctx->SetOutputDim("SampleCenterDiff",
                      {x_dims[0], product(x_dims) / x_dims[0]});
    ctx->SetOutputDim("CentersOut", ctx->GetInputDim("Centers"));
    ctx->SetOutputDim("Loss", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Loss");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }
};

class CenterLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input tensor of center_loss operator.");
    AddInput("Label", "(Tensor) Input tensor of center_loss operator.");
    AddInput("Centers", "(Tensor) Input tensor of center_loss operator.");
    AddInput("CenterUpdateRate",
             "(Tensor) Input tensor of center_loss operator.");

    AddOutput("CentersOut", "(Tensor) Input tensor of center_loss operator.");
    AddOutput("SampleCenterDiff",
              "(Tensor) output tensor of center_loss operator.");
    AddOutput("Loss", "(Tensor) Output tensor of center_loss operator.");

    AddAttr<int>("cluster_num",
                 "The output cluster num of the center_loss operator.");
    AddAttr<bool>("need_update", "whether need to update center info.");
    AddComment(R"DOC(
**CenterLoss operator**
implemention of the center loss function in the papper<<A Discriminative 
Feature Learning Approach for Deep Face Recognition>>, equations in this  implement
is:loss = 1/2 * (x-y)^2 ,where x(X) means the deep feature(output of last hidden layer )
and y(Label) the target label 
)DOC");
  }
};

class CenterLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("SampleCenterDiff"),
                   "Input(SampleCenterDiff) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        ctx.Input<Tensor>("SampleCenterDiff")->type(), ctx.device_context());
  }
};

class CenterLossOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("center_loss_grad");
    retv->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
    retv->SetInput("SampleCenterDiff", Output("SampleCenterDiff"));
    retv->SetInput("X", Input("X"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));

    retv->SetAttrMap(Attrs());
    return retv;
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPUCtx = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(center_loss, ops::CenterLossOp, ops::CenterLossOpMaker,
                  ops::CenterLossOpGradMaker);

REGISTER_OPERATOR(center_loss_grad, ops::CenterLossGradOp);

REGISTER_OP_CPU_KERNEL(center_loss, ops::CenterLossKernel<CPUCtx, float>,
                       ops::CenterLossKernel<CPUCtx, double>);

REGISTER_OP_CPU_KERNEL(center_loss_grad,
                       ops::CenterLossGradKernel<CPUCtx, float>,
                       ops::CenterLossGradKernel<CPUCtx, double>);