selected_rows_functor.cu 17.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
typhoonzero 已提交
15
#include <set>
16
#include <vector>
T
typhoonzero 已提交
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/math/math_function.h"
D
dzhwinter 已提交
19
#include "paddle/fluid/operators/math/math_function_impl.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/math/selected_rows_functor.h"
D
dzhwinter 已提交
21
#include "paddle/fluid/platform/cuda_primitives.h"
C
chengduo 已提交
22
#include "paddle/fluid/platform/float16.h"
23 24 25 26 27

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
28 29
struct SelectedRowsAdd<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
30 31 32 33 34 35 36
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2.height());
    output->set_height(in1_height);

D
dzhwinter 已提交
37
    framework::Vector<int64_t> in1_rows(input1.rows());
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
    PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in1_place));
    auto in2_place = input2.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in2_place));
    auto out_place = context.GetPlace();
    PADDLE_ENFORCE(platform::is_gpu_place(out_place));

65 66 67
    memory::Copy(boost::get<platform::CUDAPlace>(out_place), out_data,
                 boost::get<platform::CUDAPlace>(in1_place), in1_data,
                 in1_value.numel() * sizeof(T), context.stream());
68 69

    auto* in2_data = in2_value.data<T>();
D
dzhwinter 已提交
70
    memory::Copy(boost::get<platform::CUDAPlace>(out_place),
Q
QI JUN 已提交
71
                 out_data + in1_value.numel(),
D
dzhwinter 已提交
72
                 boost::get<platform::CUDAPlace>(in2_place), in2_data,
Q
QI JUN 已提交
73
                 in2_value.numel() * sizeof(T), context.stream());
74 75 76
  }
};

Q
QI JUN 已提交
77 78
template struct SelectedRowsAdd<platform::CUDADeviceContext, float>;
template struct SelectedRowsAdd<platform::CUDADeviceContext, double>;
79 80

namespace {
Q
QI JUN 已提交
81
template <typename T, int block_size>
82 83
__global__ void SelectedRowsAddTensorKernel(const T* selected_rows,
                                            const int64_t* rows, T* tensor_out,
Q
QI JUN 已提交
84
                                            int64_t row_numel) {
C
chengduo 已提交
85
  const int ty = blockIdx.x;
86 87 88 89 90 91 92 93 94
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we can not use
    // tensor_out[index] += selected_rows[index]; Instead, we have to use
    // AtomicAdd to avoid concurrent write error.
Q
qijun 已提交
95
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
96 97 98 99 100
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
101 102
struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
103 104 105 106 107 108 109 110 111
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
    PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);

    auto& in1_value = input1.value();
112
    auto& in1_rows = input1.rows();
113 114 115 116 117 118 119 120 121

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
    PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2.data<T>();
    auto* out_data = output->data<T>();

Q
QI JUN 已提交
122
    SetConstant<platform::CUDADeviceContext, T> functor;
C
chengduo 已提交
123
    functor(context, output, static_cast<T>(0));
124

Q
QI JUN 已提交
125
    const int block_size = 256;
126
    dim3 threads(block_size, 1);
C
chengduo 已提交
127
    dim3 grid(in1_rows.size(), 1);
Q
QI JUN 已提交
128 129
    SelectedRowsAddTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
130 131
        in1_data, in1_rows.CUDAData(context.GetPlace()), out_data,
        in1_row_numel);
132 133 134

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
135
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
136 137 138
  }
};

Q
QI JUN 已提交
139 140
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, double>;
C
chengduo 已提交
141 142 143
template struct SelectedRowsAdd<platform::CUDADeviceContext, platform::float16>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext,
                                      platform::float16>;
Q
QI JUN 已提交
144 145

template <typename T>
Q
QI JUN 已提交
146 147
struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
Q
QI JUN 已提交
148 149 150 151 152 153
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2->height());

154
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
155 156 157 158 159 160
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Fix CI  
Yu Yang 已提交
161 162 163
    if (in1_rows.size()) {
      in2_rows.Extend(in1_rows.begin(), in1_rows.end());
    }
Q
QI JUN 已提交
164 165 166 167 168 169 170 171

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in1_place));
    auto in2_place = input2->place();
    PADDLE_ENFORCE(platform::is_gpu_place(in2_place));

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
D
dzhwinter 已提交
172
    memory::Copy(boost::get<platform::CUDAPlace>(in2_place),
Q
QI JUN 已提交
173
                 in2_data + input2_offset,
D
dzhwinter 已提交
174
                 boost::get<platform::CUDAPlace>(in1_place), in1_data,
Q
QI JUN 已提交
175
                 in1_value.numel() * sizeof(T), context.stream());
Q
QI JUN 已提交
176 177 178
  }
};

Q
QI JUN 已提交
179 180 181 182
template struct SelectedRowsAddTo<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
183 184
template struct SelectedRowsAddTo<platform::CUDADeviceContext,
                                  platform::float16>;
Q
QI JUN 已提交
185 186 187 188 189 190 191

namespace {
template <typename T, int block_size>
__global__ void SelectedRowsAddToTensorKernel(const T* selected_rows,
                                              const int64_t* rows,
                                              T* tensor_out,
                                              int64_t row_numel) {
C
chengduo 已提交
192
  const int ty = blockIdx.x;
Q
QI JUN 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we have to use
    // Atomic Operation to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
207 208
struct SelectedRowsAddToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
Q
QI JUN 已提交
209 210 211 212 213 214 215
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
216
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
217 218 219 220 221 222 223 224

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2->data<T>();
    const int block_size = 256;
    dim3 threads(block_size, 1);
C
chengduo 已提交
225
    dim3 grid(in1_rows.size(), 1);
Q
QI JUN 已提交
226 227
    SelectedRowsAddToTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
228 229
        in1_data, in1_rows.CUDAData(context.GetPlace()), in2_data,
        in1_row_numel);
Q
QI JUN 已提交
230 231 232
  }
};

Q
QI JUN 已提交
233 234 235 236
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
237 238
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext,
                                        platform::float16>;
T
typhoonzero 已提交
239 240 241 242 243 244 245

namespace scatter {

template <typename T, int block_size>
__global__ void MergeAddKernel(const T* input, const int64_t* input_rows,
                               T* out, const int64_t* out_rows,
                               size_t out_rows_size, int64_t row_numel) {
S
sneaxiy 已提交
246
  const int ty = blockIdx.x;
T
typhoonzero 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  int tid = threadIdx.x;
  __shared__ size_t out_idx;

  if (tid == 0) {
    for (size_t i = 0; i < out_rows_size; i++) {
      if (input_rows[ty] == out_rows[i]) {
        out_idx = i;
      }
    }
  }

  __syncthreads();

  input += ty * row_numel;
  out += out_idx * row_numel;
  for (int index = tid; index < row_numel; index += block_size) {
    paddle::platform::CudaAtomicAdd(out + index, input[index]);
  }
}

template <typename T>
T
typhoonzero 已提交
268 269
struct MergeAdd<platform::CUDADeviceContext, T> {
  framework::SelectedRows operator()(const platform::CUDADeviceContext& context,
T
wip  
typhoonzero 已提交
270 271
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
S
sneaxiy 已提交
272 273 274 275 276 277 278
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
D
dzhwinter 已提交
279
    framework::Vector<int64_t> input_rows(input.rows());
Q
Qiao Longfei 已提交
280 281 282 283 284
    if (input_rows.size() == 0) {
      return;
    }

    framework::SelectedRows& out = *output;
T
typhoonzero 已提交
285
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
Q
Qiao Longfei 已提交
286 287
    std::vector<int64_t> merge_rows_cpu(row_set.begin(), row_set.end());
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
T
typhoonzero 已提交
288 289

    auto input_width = input.value().dims()[1];
T
wip  
typhoonzero 已提交
290 291 292 293

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
294 295 296 297 298
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
C
chengduo 已提交
299
    constant_functor(context, out.mutable_value(), static_cast<T>(0));
T
typhoonzero 已提交
300

T
wip  
typhoonzero 已提交
301
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
302 303 304 305
    auto* input_data = input.value().data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);
S
sneaxiy 已提交
306
    dim3 grid1(input_rows.size(), 1);
T
typhoonzero 已提交
307

S
sneaxiy 已提交
308
    MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
309 310 311
        input_data, input_rows.CUDAData(context.GetPlace()), out_data,
        out.mutable_rows()->CUDAMutableData(context.GetPlace()),
        out.rows().size(), input_width);
T
typhoonzero 已提交
312
  }
313 314 315 316

  void operator()(const platform::CUDADeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
317
    if (inputs.size() == 0) {
318
      VLOG(30) << "no input! return";
319 320 321 322
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
323
      if (in->rows().size() > 0) {
324 325 326 327 328
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
329
      VLOG(30) << "no input has value! just return" << std::endl;
330 331 332 333
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
334 335 336
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
337
      if (input->rows().size() == 0) {
338 339
        continue;
      }
340 341 342 343 344 345 346
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        "all input should have same "
                        "dimension except for the first one");
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        "all input should have same height");
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
Q
Qiao Longfei 已提交
347
    std::vector<int64_t> merge_rows_cpu(merged_row_set.begin(),
Q
format  
Qiao Longfei 已提交
348
                                        merged_row_set.end());
Q
Qiao Longfei 已提交
349
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
350 351 352 353 354 355 356 357

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

Q
Qiao Longfei 已提交
358
    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
C
chengduo 已提交
359
    constant_functor(context, out.mutable_value(), static_cast<T>(0));
360 361 362 363 364 365 366

    auto* out_data = out.mutable_value()->data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);

    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
367
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
368 369
        continue;
      }
370 371
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();
372 373 374 375 376 377 378 379
      dim3 grid1(input_rows.size(), 1);

      MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
          input_data, input_rows.CUDAData(context.GetPlace()), out_data,
          out.mutable_rows()->CUDAMutableData(context.GetPlace()),
          out.rows().size(), input_width);
    }
  }
T
typhoonzero 已提交
380 381
};

T
typhoonzero 已提交
382 383 384 385
template struct MergeAdd<platform::CUDADeviceContext, float>;
template struct MergeAdd<platform::CUDADeviceContext, double>;
template struct MergeAdd<platform::CUDADeviceContext, int>;
template struct MergeAdd<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
386
template struct MergeAdd<platform::CUDADeviceContext, platform::float16>;
T
wip  
typhoonzero 已提交
387 388 389 390 391

template <typename T, int block_size>
__global__ void UpdateToTensorKernel(const T* selected_rows,
                                     const int64_t* rows, const ScatterOps& op,
                                     T* tensor_out, int64_t row_numel) {
C
chengduo 已提交
392
  const int ty = blockIdx.x;
T
wip  
typhoonzero 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;
  // FIXME(typhoonzero): use macro fix the below messy code.
  switch (op) {
    case ScatterOps::ASSIGN:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index];
      }
      break;
    case ScatterOps::ADD:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] += selected_rows[index];
      }
      break;
    case ScatterOps::SUB:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] -= selected_rows[index];
      }
      break;
    case ScatterOps::SUBBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] - tensor_out[index];
      }
      break;
    case ScatterOps::MUL:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] *= selected_rows[index];
      }
      break;
    case ScatterOps::DIV:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] /= selected_rows[index];
      }
      break;
    case ScatterOps::DIVBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] / tensor_out[index];
      }
      break;
  }
}

template <typename T>
T
typhoonzero 已提交
438 439 440 441
struct UpdateToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
442 443
    // NOTE: Use SelectedRowsAddToTensor for better performance
    //       no additional MergeAdd called.
T
typhoonzero 已提交
444 445
    MergeAdd<platform::CUDADeviceContext, T> merge_func;
    auto merged_in1 = merge_func(context, input1);
T
wip  
typhoonzero 已提交
446 447 448 449 450 451 452 453 454 455 456

    auto in1_height = merged_in1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = merged_in1.value();
    auto& in1_rows = merged_in1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

T
typhoonzero 已提交
457 458
    auto* in1_data = in1_value.template data<T>();
    auto* in2_data = input2->data<T>();
T
wip  
typhoonzero 已提交
459

T
typhoonzero 已提交
460
    dim3 threads(platform::PADDLE_CUDA_NUM_THREADS, 1);
C
chengduo 已提交
461
    dim3 grid(in1_rows.size(), 1);
T
typhoonzero 已提交
462
    UpdateToTensorKernel<T, platform::PADDLE_CUDA_NUM_THREADS><<<
D
dzhwinter 已提交
463 464
        grid, threads, 0, context.stream()>>>(in1_data, in1_rows.cuda_data(),
                                              op, in2_data, in1_row_numel);
T
wip  
typhoonzero 已提交
465 466
  }
};
T
typhoonzero 已提交
467
}  // namespace scatter
468 469 470
}  // namespace math
}  // namespace operators
}  // namespace paddle