test_one_hot_op.py 3.6 KB
Newer Older
Y
Yang yaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import math
from op_test import OpTest
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.framework import Program, program_guard


class TestOneHotOp(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
        x_lod = [[0, 4, 5, 8, 11]]
        x = [np.random.randint(0, depth - 1) for i in xrange(x_lod[0][-1])]
        x = np.array(x).astype('int').reshape([x_lod[0][-1], 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        for i in xrange(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth, 'dtype': int(core.DataType.FP32)}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_default_dtype(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
        x_lod = [[0, 4, 5, 8, 11]]
        x = [np.random.randint(0, depth - 1) for i in xrange(x_lod[0][-1])]
        x = np.array(x).astype('int').reshape([x_lod[0][-1], 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        for i in xrange(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_exception(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        self.depth = 10
        self.place = core.CPUPlace()
        self.dimension = 12
        self.x = core.LoDTensor()
        x_lod = [[0, 4, 5, 8, 11]]
        data = [np.random.randint(11, 20) for i in xrange(x_lod[0][-1])]
        data = np.array(data).astype('int').reshape([x_lod[0][-1], 1])
        self.x.set(data, self.place)
        self.x.set_lod(x_lod)

    def test_check_output(self):
        program = Program()
        with program_guard(program):
            x = fluid.layers.data(
                name='x', shape=[self.dimension], dtype='float32', lod_level=1)
            block = program.current_block()
            one_hot_out = block.create_var(
                name="one_hot_out",
                type=core.VarDesc.VarType.LOD_TENSOR,
                dtype='float32')
            block.append_op(
                type='one_hot',
                inputs={'X': x},
                attrs={'depth': self.depth},
                outputs={'Out': one_hot_out})
            exe = fluid.Executor(self.place)

            def run():
                exe.run(feed={'x': self.x},
                        fetch_list=[one_hot_out],
                        return_numpy=False)

            self.assertRaises(core.EnforceNotMet, run)


if __name__ == '__main__':
    unittest.main()