utils.h 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <algorithm>
N
nhzlx 已提交
17 18
#include <fstream>
#include <iostream>
19 20
#include <string>
#include <vector>
21
#include "paddle/fluid/inference/paddle_inference_api.h"
22 23 24 25

namespace paddle {
namespace demo {

N
nhzlx 已提交
26 27 28 29 30
struct Record {
  std::vector<float> data;
  std::vector<int32_t> shape;
};

31
static void split(const std::string& str, char sep,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
                  std::vector<std::string>* pieces) {
  pieces->clear();
  if (str.empty()) {
    return;
  }
  size_t pos = 0;
  size_t next = str.find(sep, pos);
  while (next != std::string::npos) {
    pieces->push_back(str.substr(pos, next - pos));
    pos = next + 1;
    next = str.find(sep, pos);
  }
  if (!str.substr(pos).empty()) {
    pieces->push_back(str.substr(pos));
  }
}

N
nhzlx 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Record ProcessALine(const std::string& line) {
  VLOG(3) << "process a line";
  std::vector<std::string> columns;
  split(line, '\t', &columns);
  CHECK_EQ(columns.size(), 2UL)
      << "data format error, should be <data>\t<shape>";

  Record record;
  std::vector<std::string> data_strs;
  split(columns[0], ' ', &data_strs);
  for (auto& d : data_strs) {
    record.data.push_back(std::stof(d));
  }

  std::vector<std::string> shape_strs;
  split(columns[1], ' ', &shape_strs);
  for (auto& s : shape_strs) {
    record.shape.push_back(std::stoi(s));
  }
  VLOG(3) << "data size " << record.data.size();
  VLOG(3) << "data shape size " << record.shape.size();
  return record;
}

void CheckOutput(const std::string& referfile, const PaddleTensor& output) {
  std::string line;
  std::ifstream file(referfile);
  std::getline(file, line);
  auto refer = ProcessALine(line);
  file.close();

  size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
  VLOG(3) << "predictor output numel " << numel;
  VLOG(3) << "reference output numel " << refer.data.size();
  CHECK_EQ(numel, refer.data.size());
  switch (output.dtype) {
    case PaddleDType::INT64: {
      for (size_t i = 0; i < numel; ++i) {
        CHECK_EQ(static_cast<int64_t*>(output.data.data())[i], refer.data[i]);
      }
      break;
    }
    case PaddleDType::FLOAT32:
      for (size_t i = 0; i < numel; ++i) {
        CHECK_LT(
            fabs(static_cast<float*>(output.data.data())[i] - refer.data[i]),
            1e-5);
      }
      break;
  }
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/*
 * Get a summary of a PaddleTensor content.
 */
static std::string SummaryTensor(const PaddleTensor& tensor) {
  std::stringstream ss;
  int num_elems = tensor.data.length() / PaddleDtypeSize(tensor.dtype);

  ss << "data[:10]\t";
  switch (tensor.dtype) {
    case PaddleDType::INT64: {
      for (int i = 0; i < std::min(num_elems, 10); i++) {
        ss << static_cast<int64_t*>(tensor.data.data())[i] << " ";
      }
      break;
    }
    case PaddleDType::FLOAT32:
      for (int i = 0; i < std::min(num_elems, 10); i++) {
        ss << static_cast<float*>(tensor.data.data())[i] << " ";
      }
      break;
  }
  return ss.str();
}

}  // namespace demo
}  // namespace paddle