elementwise_mul_op.h 4.9 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/elementwise_op_function.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
27
class ElementwiseMulKernel : public framework::OpKernel<T> {
28 29
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
30 31 32 33 34 35 36
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
37 38
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
G
gongweibao 已提交
39 40
  }
};
41

G
gongweibao 已提交
42 43 44 45 46
template <typename T>
struct ElementwiseMulGradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
47 48
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
G
gongweibao 已提交
49
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
50

G
gongweibao 已提交
51 52 53
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e;
54 55
    }

G
gongweibao 已提交
56 57 58
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = x_e * dz_e;
59 60 61 62
    }
  }
};

G
gongweibao 已提交
63 64 65 66 67
template <typename T>
struct ElementwiseMulBroadCastGradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
68 69
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
G
gongweibao 已提交
70
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
71

G
gongweibao 已提交
72 73 74
    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
75 76

    if (dx) {
G
gongweibao 已提交
77 78
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e_bcast;
79
    }
G
gongweibao 已提交
80

81
    if (dy) {
G
gongweibao 已提交
82 83 84 85
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = (x_e * dz_e)
                           .reshape(Eigen::DSizes<int, 2>(pre, n))
                           .sum(Eigen::array<int, 1>{{0}});
86
    }
G
gongweibao 已提交
87 88
  }
};
89

G
gongweibao 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
template <typename T>
struct ElementwiseMulBroadCast2GradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N, typename Post>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
                  Post post) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e_bcast;
106 107
    }

G
gongweibao 已提交
108 109 110 111 112
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = (x_e * dz_e)
                           .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                           .sum(Eigen::array<int, 2>{{0, 2}});
113 114 115 116
    }
  }
};

Q
QI JUN 已提交
117
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
118
class ElementwiseMulGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
119 120
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
121 122 123 124 125 126 127 128 129
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
Q
QI JUN 已提交
130
    ElementwiseGradCompute<DeviceContext, T, ElementwiseMulGradFunctor<T>,
G
gongweibao 已提交
131
                           ElementwiseMulBroadCastGradFunctor<T>,
C
chengduoZH 已提交
132 133
                           ElementwiseMulBroadCast2GradFunctor<T>>(
        ctx, x, y, out, dout, axis, dx, dy);
G
gongweibao 已提交
134 135 136
  }
};

137 138
}  // namespace operators
}  // namespace paddle