DCGMFileReader.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import json
import glob
import logging
import tempfile
import argparse
import pandas as pd
import multiprocessing
from multiprocessing import Process

from CspChromeTraceFormatter import ChromeTraceFormatter

from CspFileReader import FileReader
from CspFileReader import getLogger
from CspFileReader import dcgmMetricParameterMap
from CspFileReader import TIME_PATH, DCGM_PATH, NET_PATH, PROFILE_PATH
from CspFileReader import NETINFO_TRACE_NUM, DCGMINFO_TRACE_NUM, PIPELINEINFO_TRACE_NUM
from CspFileReader import FILEORGANIZEFORM_BYRANK, FILEORGANIZEFORM_BYTRAINER, FILEORGANIZEFORM_BYOTHER, FILEORGANIZEFORM


class dcgmFileReader(FileReader):
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    def parseFileByGroup(self, groupId, processNum=8):
        fileFist = self.getFileListByGroup(groupId)
        displaySize = min(self._displaySize, len(fileFist))
        fileFist = fileFist[:displaySize]

        if processNum == 0:
            return self._parseTask(fileFist)

        else:
            self._logger.info("using [%d] process to do this work!" %
                              processNum)
            processPool = []
            pidList = []

            manager = multiprocessing.Manager()
            q = manager.Queue()

            taskList = self._splitTaskListForMultiProcess(fileFist, processNum)
            for task in taskList:
57 58 59 60
                subproc = Process(target=self._parseTask, args=(
                    task,
                    q,
                ))
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
                processPool.append(subproc)
                subproc.start()
                pidList.append(subproc.pid)
                self._logger.info(
                    "[DCGM reader]: process [%d] has been started, total task num is %d ..."
                    % (subproc.pid, len(processPool)))

            for t in processPool:
                t.join()
                pidList.remove(t.pid)
                self._logger.info(
                    "[DCGM reader]: process [%d] has exited! remained %d process!"
                    % (t.pid, len(pidList)))

            isFistProcess = True
            for t in processPool:
                if isFistProcess:
                    isFistProcess = False
                    dcgm_data = q.get()
                else:
81 82 83
                    dcgm_data = pd.concat([dcgm_data, q.get()],
                                          axis=0,
                                          join='outer')
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

            return dcgm_data

    def _parseTask(self, taskList, q=None):
        is_first = True
        for fileName in taskList:
            self._logger.info("I am processing %s!" % fileName)
            tmp_data = self._parseSingleFile(fileName)
            if tmp_data is None:
                continue

            if is_first:
                is_first = False
                dcgm_data = tmp_data
            else:
99 100 101
                dcgm_data = pd.concat([dcgm_data, tmp_data],
                                      axis=0,
                                      join='outer')
102
        dcgm_data = dcgm_data.dropna()
103
        if q is not None:
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
            q.put(dcgm_data)
        self._logger.info("I finish processing %s!" % fileName)
        return dcgm_data

    def _parseSingleFile(self, fileName):
        trainerId = self.getTrainerId(fileName)

        if not os.path.exists(fileName):
            logging.warning(fileName + ' not found')
            return

        regex_list = [
            (re.compile(r' +'), ','),
            (re.compile(r'^,'), ''),
        ]

        csv_tempfile = tempfile.TemporaryFile()
        with open(fileName, 'r') as fp:
            has_header = False

            for line in fp:
                # skip `nvidia-dcgm-dmon.sh` init and fini info lines
                if 'nv-hostengine' in line or 'dmon' in line or 'Host Engine Listener Started' in line:
                    continue

129 130
                if not line.strip().startswith(
                        "GPU") and not line.strip().startswith("# Entity"):
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
                    continue

                # skip non-needed headers (only the header in 1th line was needed)
                if line.strip().startswith("# Entity"):
                    line = line.strip()[2:]

                if 'Entity' == line[0:len('Entity')]:
                    if has_header:
                        continue
                    else:
                        has_header = True

                if line.strip().startswith("GPU"):
                    line = line.strip()[3:]

                for r in regex_list:
                    line = r[0].sub(r[1], line)

                csv_tempfile.write(bytes(line + "\n"))

        csv_tempfile.seek(0)

        dcgm = pd.read_csv(csv_tempfile, header=0, delimiter=',')
        # dcgm.info()
        dcgm['FB_USED_RATIO'] = dcgm['FBUSD'] / dcgm['FBTTL']
        dcgm['GPUTL'] = dcgm['GPUTL'] / 100.0
        dcgm['ts'] = dcgm['TIMESTAMP'] * 1e9
        dcgm['trainerId'] = trainerId

        return dcgm

    def _getDCGMTraceInfoByGpuId(self,
                                 groupId,
                                 gpuId,
                                 dcgm_data,
                                 pid_map,
                                 q=None):
        self._logger.info(
            "Begin to generate dcgm info, groupId = %d, gpuID = %d ..." %
            (groupId, gpuId))

        gpuDcgmData = dcgm_data[dcgm_data['Entity'].isin([gpuId])]

        traceEventList = []
        for metric, parameteList in dcgmMetricParameterMap.items():
            metaInfo = {}
            metaInfo['name'] = 'process_name'
            metaInfo['ph'] = 'M'
            metaInfo['pid'] = pid_map[metric]
            metaInfo['args'] = {'name': metric}
            traceEventList.append(metaInfo)

        for index, row in gpuDcgmData.iterrows():
            for metric, parameteList in dcgmMetricParameterMap.items():
                trainerId = int(row['trainerId']) % self._groupSize
                if trainerId >= self._displaySize:
                    continue

                di = {}
                # name = "%s_%d" % (metric, trainerId)
                name = "%s" % (metric)
                di['name'] = name
                di['pid'] = pid_map[metric]
                di['ts'] = self._align_ts(int(row['ts']))
                # di['ts'] = int(row['ts'])
                di['cat'] = metric
                di['tid'] = "%d_%d" % (groupId, trainerId)
                di['ph'] = "C"
                di['id'] = trainerId

                args = {}
                for p in parameteList:
                    args[p[0]] = row[p[1]]
                di['args'] = args

                traceEventList.append(di)
        trace = {}
        trace['traceEvents'] = traceEventList
        self.dumpDCGMDict(trace, groupId, gpuId, True)

        return trace

    def getDCGMTraceInfo(self, groupId, processNum=8):
        dcgm_data = self.parseFileByGroup(groupId, processNum)

        pid_map = {}
        init_pid = PIPELINEINFO_TRACE_NUM

        for metric in dcgmMetricParameterMap.keys():
            pid_map[metric] = init_pid
            init_pid = init_pid + 1

        manager = multiprocessing.Manager()
        q = manager.Queue()
        processPool = []
        pidList = []

        for gpuId in range(self._gpuPerTrainer):
229 230 231 232 233 234 235 236
            subproc = Process(target=self._getDCGMTraceInfoByGpuId,
                              args=(
                                  groupId,
                                  gpuId,
                                  dcgm_data,
                                  pid_map,
                                  q,
                              ))
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
            processPool.append(subproc)
            subproc.start()
            pidList.append(subproc.pid)
            self._logger.info(
                "[DCGM info]: process [%d] has been started, total task num is %d ..."
                % (subproc.pid, 1))

        for t in processPool:
            t.join()
            pidList.remove(t.pid)
            self._logger.info(
                "[DCGM info]: process [%d] has exited! remained %d process!" %
                (t.pid, len(pidList)))

        dcgmInfo = {}

        return dcgmInfo


def test_dcgmFileReader():
    args = {
        "dataPath": "data/newdata/dcgm",
        "groupSize": 4,
        "displaySize": 8,
        "gpuPerTrainer": 8,
        "minTimeStamp": 0,
        "organizeForm": FILEORGANIZEFORM_BYTRAINER,
    }

    testReader = dcgmFileReader(getLogger(), args)
    testReader.printArgs()
    data = testReader.getDCGMTraceInfo(0, 8)


if __name__ == "__main__":
    test_dcgmFileReader()