cifar.py 8.5 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import tarfile
import numpy as np
import six
20
from PIL import Image
K
Kaipeng Deng 已提交
21 22
from six.moves import cPickle as pickle

23
import paddle
K
Kaipeng Deng 已提交
24
from paddle.io import Dataset
25
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

__all__ = ['Cifar10', 'Cifar100']

URL_PREFIX = 'https://dataset.bj.bcebos.com/cifar/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz'
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'

MODE_FLAG_MAP = {
    'train10': 'data_batch',
    'test10': 'test_batch',
    'train100': 'train',
    'test100': 'test'
}


class Cifar10(Dataset):
    """
    Implementation of `Cifar-10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_
    dataset, which has 10 categories.

    Args:
        data_file(str): path to data file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train', 'test' mode. Default 'train'.
        transform(callable): transform to perform on image, None for on transform.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True
55 56 57 58
        backend(str, optional): Specifies which type of image to be returned: 
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. 
            If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
            default backend is 'pil'. Default: None.
K
Kaipeng Deng 已提交
59 60 61 62 63 64 65 66

    Returns:
        Dataset: instance of cifar-10 dataset

    Examples:

        .. code-block:: python

67 68 69 70
            import paddle
            import paddle.nn as nn
            from paddle.vision.datasets import Cifar10
            from paddle.vision.transforms import Normalize
K
Kaipeng Deng 已提交
71

72 73 74 75 76 77
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
                    self.fc = nn.Sequential(
                        nn.Linear(3072, 10),
                        nn.Softmax())
K
Kaipeng Deng 已提交
78

79
                def forward(self, image, label):
80
                    image = paddle.reshape(image, (1, -1))
81
                    return self.fc(image), label
K
Kaipeng Deng 已提交
82

83
            paddle.disable_static()
K
Kaipeng Deng 已提交
84

85
            normalize = Normalize(mean=[0.5, 0.5, 0.5],
86 87
                                  std=[0.5, 0.5, 0.5],
                                  data_format='HWC')
88
            cifar10 = Cifar10(mode='train', transform=normalize)
K
Kaipeng Deng 已提交
89

90 91 92 93
            for i in range(10):
                image, label = cifar10[i]
                image = paddle.to_tensor(image)
                label = paddle.to_tensor(label)
K
Kaipeng Deng 已提交
94

95 96 97
                model = SimpleNet()
                image, label = model(image, label)
                print(image.numpy().shape, label.numpy().shape)
K
Kaipeng Deng 已提交
98 99 100 101 102 103 104

    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
105 106
                 download=True,
                 backend=None):
K
Kaipeng Deng 已提交
107 108 109 110
        assert mode.lower() in ['train', 'test', 'train', 'test'], \
            "mode should be 'train10', 'test10', 'train100' or 'test100', but got {}".format(mode)
        self.mode = mode.lower()

111 112 113 114 115 116 117 118
        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
                "Expected backend are one of ['pil', 'cv2'], but got {}"
                .format(backend))
        self.backend = backend

K
Kaipeng Deng 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
        self._init_url_md5_flag()

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(
                data_file, self.data_url, self.data_md5, 'cifar', download)

        self.transform = transform

        # read dataset into memory
        self._load_data()

132 133
        self.dtype = paddle.get_default_dtype()

K
Kaipeng Deng 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    def _init_url_md5_flag(self):
        self.data_url = CIFAR10_URL
        self.data_md5 = CIFAR10_MD5
        self.flag = MODE_FLAG_MAP[self.mode + '10']

    def _load_data(self):
        self.data = []
        with tarfile.open(self.data_file, mode='r') as f:
            names = (each_item.name for each_item in f
                     if self.flag in each_item.name)

            for name in names:
                if six.PY2:
                    batch = pickle.load(f.extractfile(name))
                else:
                    batch = pickle.load(f.extractfile(name), encoding='bytes')

                data = batch[six.b('data')]
                labels = batch.get(
                    six.b('labels'), batch.get(six.b('fine_labels'), None))
                assert labels is not None
                for sample, label in six.moves.zip(data, labels):
                    self.data.append((sample, label))

    def __getitem__(self, idx):
        image, label = self.data[idx]
160
        image = np.reshape(image, [3, 32, 32])
161 162 163 164
        image = image.transpose([1, 2, 0])

        if self.backend == 'pil':
            image = Image.fromarray(image)
K
Kaipeng Deng 已提交
165 166
        if self.transform is not None:
            image = self.transform(image)
167 168 169 170

        if self.backend == 'pil':
            return image, np.array(label).astype('int64')

171
        return image.astype(self.dtype), np.array(label).astype('int64')
K
Kaipeng Deng 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

    def __len__(self):
        return len(self.data)


class Cifar100(Cifar10):
    """
    Implementation of `Cifar-100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_
    dataset, which has 100 categories.

    Args:
        data_file(str): path to data file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train', 'test' mode. Default 'train'.
        transform(callable): transform to perform on image, None for on transform.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True
189 190 191 192
        backend(str, optional): Specifies which type of image to be returned: 
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. 
            If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
            default backend is 'pil'. Default: None.
K
Kaipeng Deng 已提交
193 194 195 196 197 198 199 200

    Returns:
        Dataset: instance of cifar-100 dataset

    Examples:

        .. code-block:: python

201 202 203 204
            import paddle
            import paddle.nn as nn
            from paddle.vision.datasets import Cifar100
            from paddle.vision.transforms import Normalize
K
Kaipeng Deng 已提交
205

206 207 208 209 210 211
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
                    self.fc = nn.Sequential(
                        nn.Linear(3072, 10),
                        nn.Softmax())
K
Kaipeng Deng 已提交
212

213
                def forward(self, image, label):
214
                    image = paddle.reshape(image, (1, -1))
215
                    return self.fc(image), label
K
Kaipeng Deng 已提交
216

217
            paddle.disable_static()
K
Kaipeng Deng 已提交
218

219
            normalize = Normalize(mean=[0.5, 0.5, 0.5],
220 221
                                  std=[0.5, 0.5, 0.5],
                                  data_format='HWC')
222
            cifar100 = Cifar100(mode='train', transform=normalize)
K
Kaipeng Deng 已提交
223

224 225 226 227
            for i in range(10):
                image, label = cifar100[i]
                image = paddle.to_tensor(image)
                label = paddle.to_tensor(label)
K
Kaipeng Deng 已提交
228

229 230 231
                model = SimpleNet()
                image, label = model(image, label)
                print(image.numpy().shape, label.numpy().shape)
K
Kaipeng Deng 已提交
232 233 234 235 236 237 238

    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
239 240 241 242
                 download=True,
                 backend=None):
        super(Cifar100, self).__init__(data_file, mode, transform, download,
                                       backend)
K
Kaipeng Deng 已提交
243 244 245 246 247

    def _init_url_md5_flag(self):
        self.data_url = CIFAR100_URL
        self.data_md5 = CIFAR100_MD5
        self.flag = MODE_FLAG_MAP[self.mode + '100']