gan_trainer_image.py 10.5 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import itertools
import random
import numpy
19
import sys,os,gc
W
wangyang59 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
from PIL import Image

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter

import matplotlib.pyplot as plt


def plot2DScatter(data, outputfile):
    # Generate some test data
    x = data[:, 0]
    y = data[:, 1]
    print "The mean vector is %s" % numpy.mean(data, 0)
    print "The std vector is %s" % numpy.std(data, 0)

    heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

    plt.clf()
    plt.scatter(x, y)
    # plt.show()
    plt.savefig(outputfile, bbox_inches='tight')

def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def copy_shared_parameters(src, dst):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])


    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()
        
def print_parameters(src):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]

    print "***************"
    for p in src_params:
        print "Name is %s" % p.getName()
        print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()

def load_mnist_data(imageFile):
    f = open(imageFile, "rb")
    f.read(16)

    # Define number of samples for train/test
    if "train" in imageFile:
        #n = 60000
        n = 60000
    else:
        n = 10000
    
    data = numpy.zeros((n, 28*28), dtype = "float32")
    
    for i in range(n):
        pixels = []
        for j in range(28 * 28):
W
wangyang59 已提交
91
            pixels.append(float(ord(f.read(1))) / 255.0 * 2.0 - 1.0)
W
wangyang59 已提交
92 93 94 95 96
        data[i, :] = pixels

    f.close()
    return data

97 98 99 100 101 102 103 104 105
def merge(images, size):
    h, w = 28, 28
    img = numpy.zeros((h * size[0], w * size[1]))
    for idx in xrange(size[0] * size[1]):
        i = idx % size[1]
        j = idx // size[1]
        img[j*h:j*h+h, i*w:i*w+w] = (images[idx, :].reshape((h, w)) + 1.0) / 2.0 * 255.0
    return img

W
wangyang59 已提交
106
def saveImages(images, path):
107 108 109
    merged_img = merge(images, [8, 8])
    im = Image.fromarray(merged_img).convert('RGB')
    im.save(path)
W
wangyang59 已提交
110 111 112 113 114 115 116 117
    
def get_real_samples(batch_size, data_np):
    return data_np[numpy.random.choice(data_np.shape[0], batch_size, 
                                       replace=False),:]
    
def get_noise(batch_size, noise_dim):
    return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')

W
wangyang59 已提交
118 119 120 121
def get_sample_noise(batch_size):
    return numpy.random.normal(size=(batch_size, 28*28),
                               scale=0.1).astype('float32')

W
wangyang59 已提交
122
def get_fake_samples(generator_machine, batch_size, noise):
W
wangyang59 已提交
123 124
    gen_inputs = api.Arguments.createArguments(1)
    gen_inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise))
W
wangyang59 已提交
125 126 127 128 129 130 131 132 133 134 135
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
    return fake_samples

def get_training_loss(training_machine, inputs):
    outputs = api.Arguments.createArguments(0)
    training_machine.forward(inputs, outputs, api.PASS_TEST)
    loss = outputs.getSlotValue(0).copyToNumpyMat()
    return numpy.mean(loss)

W
wangyang59 已提交
136
def prepare_discriminator_data_batch_pos(batch_size, data_np, sample_noise):
W
wangyang59 已提交
137 138
    real_samples = get_real_samples(batch_size, data_np)
    labels = numpy.ones(batch_size, dtype='int32')
W
wangyang59 已提交
139
    inputs = api.Arguments.createArguments(3)
140
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(real_samples))
W
wangyang59 已提交
141 142
    inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
    inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(labels))
W
wangyang59 已提交
143 144
    return inputs

W
wangyang59 已提交
145 146
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise,
                                         sample_noise):
W
wangyang59 已提交
147 148 149
    fake_samples = get_fake_samples(generator_machine, batch_size, noise)
    #print fake_samples.shape
    labels = numpy.zeros(batch_size, dtype='int32')
W
wangyang59 已提交
150
    inputs = api.Arguments.createArguments(3)
151
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(fake_samples))
W
wangyang59 已提交
152 153
    inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
    inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(labels))
W
wangyang59 已提交
154 155
    return inputs

W
wangyang59 已提交
156
def prepare_generator_data_batch(batch_size, noise, sample_noise):
W
wangyang59 已提交
157 158
    label = numpy.ones(batch_size, dtype='int32')
    #label = numpy.zeros(batch_size, dtype='int32')
W
wangyang59 已提交
159
    inputs = api.Arguments.createArguments(3)
160
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise))
W
wangyang59 已提交
161 162
    inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
    inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(label))
W
wangyang59 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
180
    api.initPaddle('--use_gpu=1', '--dot_period=10', '--log_period=100')
W
wangyang59 已提交
181 182 183 184 185 186 187 188
    gen_conf = parse_config("gan_conf_image.py", "mode=generator_training")
    dis_conf = parse_config("gan_conf_image.py", "mode=discriminator_training")
    generator_conf = parse_config("gan_conf_image.py", "mode=generator")
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")
    sample_dim = get_layer_size(dis_conf.model_config, "sample")
    
    data_np = load_mnist_data("./data/raw_data/train-images-idx3-ubyte")
189
    
W
wangyang59 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    # this create a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)

    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)

    # generator_machine is used to generate data only, which is used for
    # training discrinator
    logger.info(str(generator_conf.model_config))
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)
    
    dis_trainer = api.Trainer.create(
        dis_conf, dis_training_machine)

    gen_trainer = api.Trainer.create(
        gen_conf, gen_training_machine)
    
    dis_trainer.startTrain()
    gen_trainer.startTrain()
    
    copy_shared_parameters(gen_training_machine, dis_training_machine)
    copy_shared_parameters(gen_training_machine, generator_machine)
    
    curr_train = "dis"
    curr_strike = 0
217
    MAX_strike = 10
W
wangyang59 已提交
218 219 220 221 222 223 224 225 226
     
    for train_pass in xrange(100):
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
        for i in xrange(1000):
#             data_batch_dis = prepare_discriminator_data_batch(
#                     generator_machine, batch_size, noise_dim, sample_dim)
#             dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
            noise = get_noise(batch_size, noise_dim)
W
wangyang59 已提交
227
            sample_noise = get_sample_noise(batch_size)
W
wangyang59 已提交
228
            data_batch_dis_pos = prepare_discriminator_data_batch_pos(
W
wangyang59 已提交
229
                batch_size, data_np, sample_noise)
W
wangyang59 已提交
230
            dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
W
wangyang59 已提交
231 232
            
            sample_noise = get_sample_noise(batch_size)   
W
wangyang59 已提交
233
            data_batch_dis_neg = prepare_discriminator_data_batch_neg(
W
wangyang59 已提交
234
                generator_machine, batch_size, noise, sample_noise)
W
wangyang59 已提交
235 236 237 238 239
            dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)            
                         
            dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
             
            data_batch_gen = prepare_generator_data_batch(
W
wangyang59 已提交
240
                    batch_size, noise, sample_noise)
W
wangyang59 已提交
241 242 243 244 245 246
            gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
             
            if i % 100 == 0:
                print "d_pos_loss is %s     d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg) 
                print "d_loss is %s    g_loss is %s" % (dis_loss, gen_loss)
                             
W
wangyang59 已提交
247
            if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss_neg > gen_loss):
W
wangyang59 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                if curr_train == "dis":
                    curr_strike += 1
                else:
                    curr_train = "dis"
                    curr_strike = 1                
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
#                 dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
#                 print "getForwardOutput loss is %s" % dis_loss                
                copy_shared_parameters(dis_training_machine, gen_training_machine)
 
            else:
                if curr_train == "gen":
                    curr_strike += 1
                else:
                    curr_train = "gen"
                    curr_strike = 1
                gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)    
                copy_shared_parameters(gen_training_machine, dis_training_machine)
                copy_shared_parameters(gen_training_machine, generator_machine)
 
        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
        
        
        fake_samples = get_fake_samples(generator_machine, batch_size, noise)
274
        saveImages(fake_samples, "train_pass%s.png" % train_pass)
W
wangyang59 已提交
275 276 277 278 279
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()

if __name__ == '__main__':
    main()