analyzer_ner_tester.cc 8.4 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

T
tensor-tang 已提交
15
#include "paddle/fluid/inference/analysis/analyzer.h"
L
luotao1 已提交
16
#include <gtest/gtest.h>
17
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/inference/analysis/ut_helper.h"
19
#include "paddle/fluid/inference/api/analysis_predictor.h"
L
luotao1 已提交
20
#include "paddle/fluid/inference/api/helper.h"
21
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
L
luotao1 已提交
22 23 24 25 26 27
#include "paddle/fluid/platform/profiler.h"

DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
L
luotao1 已提交
28
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
L
luotao1 已提交
29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace inference {

struct DataRecord {
  std::vector<std::vector<int64_t>> word_data_all, mention_data_all;
  std::vector<std::vector<int64_t>> rnn_word_datas, rnn_mention_datas;
  std::vector<size_t> lod;  // two inputs have the same lod info.
  size_t batch_iter{0};
  size_t batch_size{1};
L
luotao1 已提交
39
  size_t num_samples;  // total number of samples
L
luotao1 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= word_data_all.size()) {
      data.word_data_all.assign(word_data_all.begin() + batch_iter,
                                word_data_all.begin() + batch_end);
      data.mention_data_all.assign(mention_data_all.begin() + batch_iter,
                                   mention_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod.push_back(0);
      CHECK(!data.word_data_all.empty());
      CHECK(!data.mention_data_all.empty());
      CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size());
      for (size_t j = 0; j < data.word_data_all.size(); j++) {
        data.rnn_word_datas.push_back(data.word_data_all[j]);
        data.rnn_mention_datas.push_back(data.mention_data_all[j]);
        // calculate lod
        data.lod.push_back(data.lod.back() + data.word_data_all[j].size());
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      // load word data
      std::vector<int64_t> word_data;
      split_to_int64(data[1], ' ', &word_data);
      // load mention data
      std::vector<int64_t> mention_data;
      split_to_int64(data[3], ' ', &mention_data);
      word_data_all.push_back(std::move(word_data));
      mention_data_all.push_back(std::move(mention_data));
    }
L
luotao1 已提交
86
    num_samples = num_lines;
L
luotao1 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_word_tensor, lod_mention_tensor;
  lod_word_tensor.name = "word";
  lod_mention_tensor.name = "mention";
  auto one_batch = data->NextBatch();
  int size = one_batch.lod[one_batch.lod.size() - 1];  // token batch size
  lod_word_tensor.shape.assign({size, 1});
  lod_word_tensor.lod.assign({one_batch.lod});
  lod_mention_tensor.shape.assign({size, 1});
  lod_mention_tensor.lod.assign({one_batch.lod});
  // assign data
  TensorAssignData<int64_t>(&lod_word_tensor, one_batch.rnn_word_datas);
  TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.rnn_mention_datas);
  // Set inputs.
  input_slots->assign({lod_word_tensor, lod_mention_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::INT64;
  }
}

// the first inference result
const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
                                       48, 39, 38, 16, 25};

115
void TestChineseNERPrediction(bool use_analysis) {
L
luotao1 已提交
116 117 118 119 120 121 122
  NativeConfig config;
  config.prog_file = FLAGS_infer_model + "/__model__";
  config.param_file = FLAGS_infer_model + "/param";
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;

123 124
  std::vector<PaddleTensor> input_slots, outputs;
  std::unique_ptr<PaddlePredictor> predictor;
L
luotao1 已提交
125
  Timer timer;
126 127 128 129 130 131 132 133 134 135 136 137 138 139
  if (use_analysis) {
    AnalysisConfig cfg;
    cfg.prog_file = FLAGS_infer_model + "/__model__";
    cfg.param_file = FLAGS_infer_model + "/param";
    cfg.use_gpu = false;
    cfg.device = 0;
    cfg.specify_input_name = true;
    cfg.enable_ir_optim = true;
    predictor =
        CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
  } else {
    predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  }
L
luotao1 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

  if (FLAGS_test_all_data) {
    LOG(INFO) << "test all data";
    double sum = 0;
    size_t num_samples;
    for (int i = 0; i < FLAGS_repeat; i++) {
      DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
      num_samples = data.num_samples;
      for (size_t bid = 0; bid < num_samples; ++bid) {
        PrepareInputs(&input_slots, &data, FLAGS_batch_size);
        timer.tic();
        predictor->Run(input_slots, &outputs);
        sum += timer.toc();
      }
    }
    LOG(INFO) << "total number of samples: " << num_samples;
    PrintTime(FLAGS_batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat);
    LOG(INFO) << "average latency of each sample: "
              << sum / FLAGS_repeat / num_samples;
    return;
  }
L
luotao1 已提交
161
  // Prepare inputs.
L
luotao1 已提交
162
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
L
luotao1 已提交
163 164 165 166 167 168
  PrepareInputs(&input_slots, &data, FLAGS_batch_size);

  timer.tic();
  for (int i = 0; i < FLAGS_repeat; i++) {
    predictor->Run(input_slots, &outputs);
  }
L
luotao1 已提交
169
  PrintTime(FLAGS_batch_size, FLAGS_repeat, 1, 0, timer.toc() / FLAGS_repeat);
L
luotao1 已提交
170 171 172 173 174 175 176 177 178 179

  PADDLE_ENFORCE(outputs.size(), 1UL);
  auto &out = outputs[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  PADDLE_ENFORCE_GT(size, 0);
  int64_t *result = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < std::min(11UL, size); i++) {
    PADDLE_ENFORCE(result[i], chinese_ner_result_data[i]);
  }
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

  if (use_analysis) {
    // run once for comparion as reference
    auto ref_predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
    std::vector<PaddleTensor> ref_outputs_slots;
    ref_predictor->Run(input_slots, &ref_outputs_slots);
    EXPECT_EQ(ref_outputs_slots.size(), outputs.size());
    auto &ref_out = ref_outputs_slots[0];
    size_t ref_size =
        std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
                        [](int a, int b) { return a * b; });
    EXPECT_EQ(size, ref_size);
    int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
    for (size_t i = 0; i < size; ++i) {
      EXPECT_EQ(pdata_ref[i], result[i]);
    }

    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
    ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
    EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
    EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 2);
    EXPECT_EQ(num_ops, 14);
  }
L
luotao1 已提交
220 221
}

222 223 224
TEST(Analyzer_Chinese_ner, native) { TestChineseNERPrediction(false); }

TEST(Analyzer_Chinese_ner, analysis) { TestChineseNERPrediction(true); }
L
luotao1 已提交
225 226 227

}  // namespace inference
}  // namespace paddle