paddle_inference_api.h 4.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16 17
/*
 * This file contains the definition of a simple Inference API for Paddle.
 *
18
 * ATTENTION: It requires some C++11 features, for lower version C++ or C, we
19 20 21
 * might release another API.
 */

Y
Yan Chunwei 已提交
22 23
#pragma once

24
#include <cassert>
25
#include <memory>
Y
Yan Chunwei 已提交
26 27 28 29 30
#include <string>
#include <vector>

namespace paddle {

X
Xin Pan 已提交
31 32 33 34 35
enum PaddleDType {
  FLOAT32,
  INT64,
};

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class PaddleBuf {
 public:
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);
  // Copy only available when memory is managed externally.
  explicit PaddleBuf(const PaddleBuf&);
  PaddleBuf& operator=(const PaddleBuf&);
  // Do not own the memory.
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  // Own memory.
  PaddleBuf(size_t length)
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  // Resize to `length` bytes.
  void Resize(size_t length);
  // Reset to external memory.
  void Reset(void* data, size_t length);
  bool empty() const { return length_ == 0; }
  void* data() const { return data_; }
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
X
Xin Pan 已提交
64 65
};

66
struct PaddleTensor {
67
  PaddleTensor() = default;
68 69
  std::string name;  // variable name.
  std::vector<int> shape;
Y
Yan Chunwei 已提交
70
  // TODO(Superjomn) for LoD support, add a vector<vector<int>> field if needed.
X
Xin Pan 已提交
71 72
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
73 74
};

Y
Yan Chunwei 已提交
75
enum class PaddleEngineKind {
76 77 78
  kNative = 0,         // Use the native Fluid facility.
  kAnakin,             // Use Anakin for inference.
  kAutoMixedTensorRT,  // Automatically mix Fluid with TensorRT.
Y
Yan Chunwei 已提交
79 80 81 82 83
  // TODO(Superjomn) support following engines latter.
  // kTensorRT,           // Use TensorRT for inference.
  // kAutoMixedAnakin,    // Automatically mix Fluid with Anakin.
};

84
/*
Y
Yan Chunwei 已提交
85 86 87
 * A simple Inference API for Paddle. Currently this API can be used by
 * non-sequence scenerios.
 */
88
class PaddlePredictor {
W
Wu Yi 已提交
89
 public:
90 91 92
  struct Config;
  PaddlePredictor() = default;
  PaddlePredictor(const PaddlePredictor&) = delete;
93
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;
Y
Yan Chunwei 已提交
94 95

  // Predict an record.
X
Xin Pan 已提交
96
  // The caller should be responsible for allocating and releasing the memory of
97 98 99
  // `inputs`. `inputs` should be available until Run returns. Caller should be
  // responsible for the output tensor's buffer, either allocated or passed from
  // outside.
100
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
101 102
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;
103 104 105 106

  // Clone a predictor that share the model weights, the Cloned predictor should
  // be thread-safe.
  virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
Y
Yan Chunwei 已提交
107 108

  // Destroy the Predictor.
109
  virtual ~PaddlePredictor() = default;
110 111 112

  // The common configs for all the predictors.
  struct Config {
Y
Yan Chunwei 已提交
113
    std::string model_dir;  // path to the model directory.
Y
Yan Chunwei 已提交
114 115 116
  };
};

Y
Yan Chunwei 已提交
117
struct NativeConfig : public PaddlePredictor::Config {
Y
Yan Chunwei 已提交
118
  // GPU related fields.
Y
Yan Chunwei 已提交
119
  bool use_gpu{false};
Y
Yan Chunwei 已提交
120 121 122
  int device{0};
  float fraction_of_gpu_memory{-1.f};  // Negative to notify initialization.

Y
Yan Chunwei 已提交
123 124 125 126
  std::string prog_file;
  std::string param_file;
};

Y
Yan Chunwei 已提交
127 128 129 130 131 132 133
// Configurations for Anakin engine.
struct AnakinConfig : public PaddlePredictor::Config {
  int device;
  std::string model_file;
  int max_batch_size{-1};
};

134 135 136 137 138
struct TensorRTConfig : public NativeConfig {
  // Determine whether a subgraph will be executed by TRT.
  int min_subgraph_size{1};
};

Y
Yan Chunwei 已提交
139 140 141 142 143 144 145 146 147
// A factory to help create different predictors.
//
// FOR EXTENSION DEVELOPER:
// Different predictors are designated by config type and engine kind. Similar
// configs can be merged, but there shouldn't be a huge config containing
// different fields for more than one kind of predictors.
//
// Similarly, each engine kind should map to a unique predictor implementation.
template <typename ConfigT, PaddleEngineKind engine = PaddleEngineKind::kNative>
148
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
149 150 151

int PaddleDtypeSize(PaddleDType dtype);

Y
Yan Chunwei 已提交
152
}  // namespace paddle