pool_mkldnn_op.cc 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17 18 19 20 21
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

22 23
using framework::DataLayout;
using mkldnn::memory;
24
using mkldnn::pooling_backward;
25 26 27 28 29
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
30 31 32

// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
M
mozga-intel 已提交
33 34 35 36 37
static std::string gethash(const memory::dims& input_dims,
                           const std::string& pooling_type,
                           const std::vector<int>& ksize,
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
38
                           const memory::data_type& dt,
M
mozga-intel 已提交
39 40
                           const std::string& suffix) {
  auto dims2str = [](const memory::dims& operand_dims) {
41 42 43 44 45 46 47
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dims2str(input_dims) + dims2str(ksize) + dims2str(strides) +
48
         dims2str(paddings) + std::to_string(dt) + pooling_type + suffix;
49 50
}

51 52
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                      int padding, int stride) {
53 54 55
  return (input_size - kernel_size + 2 * padding) / stride + 1;
}

56 57 58 59 60 61
static inline void CorrectOutputSize(
    const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
    const std::vector<int>& kernel_size, const std::vector<int>& paddings,
    const std::vector<int>& strides,
    std::vector<int>& right_bot_padding) {  // NOLINT
  for (size_t i = 0; i < right_bot_padding.size(); i++) {
62 63 64 65 66 67 68 69
    int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                           paddings[i], strides[i]);
    if (desired_size != dst_tz[i + 2]) {
      right_bot_padding[i] += strides[i];
    }
  }
}

70 71 72 73 74 75 76 77 78 79 80 81 82
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

83 84 85
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
86 87 88 89 90

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
91
    bool is_test = ctx.Attr<bool>("is_test");
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

112 113 114
    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

115 116
    mkldnn::memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(input->type());
117
    const std::string key = gethash(src_tz, pooling_type, ksize, strides,
118
                                    paddings, dt, ctx.op().Output("Out"));
119 120 121 122 123 124
    const std::string key_pool_p = key + "@pool_p";
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
125

126 127 128
    auto pool_p =
        std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
    if (pool_p == nullptr) {
129 130 131 132 133 134 135
      const std::vector<int>& padding_left_top(paddings);
      std::vector<int> padding_right_bottom(paddings);
      bool ceil_mode = ctx.Attr<bool>("ceil_mode");
      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          padding_right_bottom);
      }
X
xiaoli.liu@intel.com 已提交
136 137

      auto src_md = platform::MKLDNNMemDesc(src_tz, dt, input_format);
138

139 140 141 142
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */
X
xiaoli.liu@intel.com 已提交
143 144 145 146 147
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dt, mkldnn::memory::format::any);
      auto propagation = src_md.data.data_type == mkldnn_f32
                             ? mkldnn::prop_kind::forward_training
                             : mkldnn::prop_kind::forward_scoring;
148
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
X
xiaoli.liu@intel.com 已提交
149 150 151
          CreatePrimitiveDesc(src_md, dst_md, propagation, strides,
                              padding_left_top, padding_right_bottom, ksize,
                              pooling_type, mkldnn_engine, ceil_mode, is_test);
152 153

      // save pool_pd into global device context to be referred in backward path
154
      if (!is_test) dev_ctx.SetBlob(key_pool_pd, pool_pd);
155

156 157 158 159
      auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
                                                 to_void_cast<T>(input_data));
      auto dst_memory =
          std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
160

161 162 163
      dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);

164 165 166 167 168 169 170 171 172 173 174 175 176
      if (is_test) {
        pool_p = std::make_shared<pooling_forward>(*pool_pd, *src_memory,
                                                   *dst_memory);
      } else {
        std::shared_ptr<mkldnn::memory> workspace_memory =
            CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);

        // save pool_workspace_memory to be referred in backward path
        dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);

        pool_p = std::make_shared<pooling_forward>(
            *pool_pd, *src_memory, *dst_memory, *workspace_memory);
      }
177 178

      dev_ctx.SetBlob(key_pool_p, pool_p);
179 180 181

      output_format =
          (memory::format)dst_memory->get_primitive_desc().desc().data.format;
182 183 184 185 186 187 188 189 190 191
    } else {
      // Primitives already exist
      auto pool_src_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(pool_src_memory_p != nullptr,
                     "Fail to find pooling src mem_p in device context");
      auto pool_dst_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
      PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
                     "Fail to find pooling dst mem_p in device context");
192
      pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
193
      pool_dst_memory_p->set_data_handle(output_data);
194 195 196 197

      output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
                          .desc()
                          .data.format;
198
    }
199 200

    // push primitive to stream and wait until it's executed
201
    std::vector<mkldnn::primitive> pipeline{*pool_p};
202 203 204 205
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
206 207 208 209 210
  }

 private:
  std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
X
xiaoli.liu@intel.com 已提交
211 212
      const mkldnn::prop_kind& propagation, const std::vector<int>& stride,
      const std::vector<int>& padding_left_top,
213 214
      const std::vector<int>& padding_right_bot, const std::vector<int>& kernel,
      const std::string& pooling_type, const mkldnn::engine& engine,
215 216 217 218
      bool ceil_mode, bool is_test) const {
    auto mkldnn_forward_prop_kind = is_test
                                        ? mkldnn::prop_kind::forward_inference
                                        : mkldnn::prop_kind::forward_training;
219
    auto pool_desc = mkldnn::pooling_forward::desc(
220
        mkldnn_forward_prop_kind,
221 222
        pooling_type == "max" ? mkldnn::algorithm::pooling_max
                              : mkldnn::algorithm::pooling_avg,
223 224
        src, dst, stride, kernel, padding_left_top, padding_right_bot,
        mkldnn::padding_kind::zero);
225 226 227 228 229 230 231 232 233 234 235 236

    auto p_pool_pd =
        new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
    return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
  }

  std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
      const std::string& pooling_type, const mkldnn::engine& engine) const {
    mkldnn::memory::primitive_desc workspace_md =
        pooling_type == "max"
            ? pool_pd->workspace_primitive_desc()
237 238 239 240
            : mkldnn::memory::primitive_desc({{},
                                              platform::MKLDNNGetDataType<T>(),
                                              mkldnn::memory::format::nchw},
                                             engine);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    auto p_workspace_memory = new mkldnn::memory(workspace_md);
    return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

258 259 260 261 262 263 264
    PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
                       in_x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input X tensor");
    PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
                       out_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input output_grad tensor");

265 266 267 268
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();

    const T* out_grad_data = out_grad->data<T>();
    T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
287
    memory::format in_x_grad_format{memory::format::format_undef};
288 289 290 291 292 293

    std::vector<int> diff_src_tz =
        paddle::framework::vectorize2int(in_x_grad->dims());
    std::vector<int> diff_dst_tz =
        paddle::framework::vectorize2int(out_grad->dims());

294 295
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
296 297 298
    const std::string key =
        gethash(diff_src_tz, pooling_type, ksize, strides, paddings,
                memory::data_type::f32, ctx.op().Input("Out"));
299 300 301
    const std::string key_pool_bwd_p = key + "@pool_bwd_p";
    const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p";
    const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p";
302 303
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
304 305 306
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
307

308 309 310 311 312 313 314 315 316 317 318 319 320 321
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()},
                mkldnn_engine},
               to_void_cast<T>(out_grad_data));

    std::shared_ptr<memory> diff_src_memory;
    std::shared_ptr<memory> diff_dst_memory;
    auto dst_memory =
        std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find dst_memory in device context");

    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
322 323 324
    auto pool_bwd_p = std::static_pointer_cast<pooling_backward>(
        dev_ctx.GetBlob(key_pool_bwd_p));
    if (pool_bwd_p == nullptr) {
325 326 327 328 329
      // Retrieve src_memory/dst_memory saved in forward pass
      auto src_memory =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(src_memory != nullptr,
                     "Fail to find src_memory in device context");
330 331 332 333 334 335
      // Retrieve pool_pd/pool_workspace_memory from device context
      auto pool_pd =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx.GetBlob(key_pool_pd));
      PADDLE_ENFORCE(pool_pd != nullptr,
                     "Fail to find pool_pd in device context");
336
      auto workspace_memory = std::static_pointer_cast<memory>(
337 338 339 340
          dev_ctx.GetBlob(key_pool_workspace_memory));
      PADDLE_ENFORCE(workspace_memory != nullptr,
                     "Fail to find workspace_memory in device context");

341 342 343
      // create memory descriptors for pooling
      auto diff_src_md = src_memory.get()->get_primitive_desc().desc();
      auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc();
344 345 346 347 348 349 350 351 352

      auto pool_bwd_desc = mkldnn::pooling_backward::desc(
          pooling_type == "max" ? mkldnn::algorithm::pooling_max
                                : mkldnn::algorithm::pooling_avg,
          diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
          mkldnn::padding_kind::zero);
      auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
          pool_bwd_desc, mkldnn_engine, *pool_pd);

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
      // reorder between user_diff_dst and pool diff_dst if needed
      diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      diff_src_memory = std::make_shared<memory>(
          pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data);

      dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory);

369
      pool_bwd_p = std::make_shared<pooling_backward>(
370
          pool_bwd_pd, *diff_dst_memory, *workspace_memory, *diff_src_memory);
371
      dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p);
372

373 374
    } else {
      // Primitives already exist
375
      diff_src_memory = std::static_pointer_cast<memory>(
376
          dev_ctx.GetBlob(key_pool_diff_src_mem_p));
377
      PADDLE_ENFORCE(diff_src_memory != nullptr,
378
                     "Fail to find pooling src mem_p in device context");
379
      diff_dst_memory = std::static_pointer_cast<memory>(
380
          dev_ctx.GetBlob(key_pool_diff_dst_mem_p));
381
      PADDLE_ENFORCE(diff_dst_memory != nullptr,
382
                     "Fail to find pooling dst mem_p in device context");
383 384 385 386 387 388 389 390 391 392 393 394

      diff_src_memory->set_data_handle(reinterpret_cast<void*>(in_x_grad_data));
      diff_dst_memory->set_data_handle(const_cast<T*>(out_grad_data));

      // reorder between user_diff_dst and pool diff_dst if needed
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }
395
    }
396

397 398 399 400
    in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
                           .desc()
                           .data.format;

401
    // push primitive to stream and wait until it's executed
402 403 404 405
    std::vector<mkldnn::primitive> pipeline;
    if (is_diff_dst_reordered) {
      pipeline.push_back(reorder_diff_dst);
    }
406
    pipeline.push_back(*pool_bwd_p);
407
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
408 409 410

    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
411 412 413 414 415 416
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

417 418
namespace ops = paddle::operators;

419
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
420 421 422 423
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

424
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
425
                   ops::PoolMKLDNNGradOpKernel<float>);