lstm_cpu_kernel.h 11.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <type_traits>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
D
dangqingqing 已提交
19

P
peizhilin 已提交
20 21 22 23 24 25
#if defined(_WIN32)
#if defined(__AVX2__) || defined(__AVX__)
inline __m256 operator+=(__m256 a, __m256 b) { return _mm256_add_ps(a, b); }
#endif
#endif

D
dangqingqing 已提交
26 27 28 29 30 31 32 33
namespace paddle {
namespace operators {
namespace math {
namespace detail {

#ifndef __NVCC__

template <class T, class Op>
34
void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
35 36
                                     int frame_size, T cell_clip,
                                     ActivationType active_node,
37 38
                                     ActivationType active_gate,
                                     ActivationType active_state) {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  T r_value_in;
  T r_value_ig;
  T r_value_fg;
  T r_value_og;
  T r_checkI;
  T r_checkF;
  T r_checkO;
  T r_state;
  T r_prev_state = 0;
  T r_state_atv;
  T r_out;

  T *value_in = value.gate_value;
  T *value_ig = value.gate_value + frame_size;
  T *value_fg = value.gate_value + frame_size * 2;
  T *value_og = value.gate_value + frame_size * 3;

  for (int i = 0; i < frame_size; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    r_checkI = value.check_ig ? value.check_ig[i] : 0;
    r_checkF = value.check_fg ? value.check_fg[i] : 0;
    r_checkO = value.check_og ? value.check_og[i] : 0;

    if (value.prev_state_value) {
      r_prev_state = value.prev_state_value[i];
D
dangqingqing 已提交
67 68
    }

69 70
    op(&r_value_in, &r_value_ig, &r_value_fg, &r_value_og, &r_prev_state,
       &r_state, &r_state_atv, &r_out, &r_checkI, &r_checkF, &r_checkO,
71
       &cell_clip, active_node, active_gate, active_state);
72 73 74 75 76 77 78 79

    value_in[i] = r_value_in;
    value_ig[i] = r_value_ig;
    value_fg[i] = r_value_fg;
    value_og[i] = r_value_og;
    value.state_value[i] = r_state;
    value.state_active_value[i] = r_state_atv;
    value.output_value[i] = r_out;
D
dangqingqing 已提交
80 81 82 83
  }
}

template <class T, class Op>
84
void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
85
                                      LstmMetaGrad<T> grad, int frame_size,
86
                                      T cell_clip, ActivationType active_node,
87 88
                                      ActivationType active_gate,
                                      ActivationType active_state) {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  T r_value_in;
  T r_value_ig;
  T r_value_fg;
  T r_value_og;
  T r_grad_in;
  T r_grad_ig;
  T r_grad_fg;
  T r_grad_og;
  T r_prev_state = 0;
  T r_prev_state_grad;
  T r_state;
  T r_state_grad;
  T r_state_atv;
  T r_output_grad;
  T r_checkI;
  T r_checkF;
  T r_checkO;
  T r_checkIGrad;
  T r_checkFGrad;
  T r_checkOGrad;

  T *value_in = value.gate_value;
  T *value_ig = value.gate_value + frame_size;
  T *value_fg = value.gate_value + frame_size * 2;
  T *value_og = value.gate_value + frame_size * 3;
  T *grad_in = grad.gate_grad;
  T *grad_ig = grad.gate_grad + frame_size;
  T *grad_fg = grad.gate_grad + frame_size * 2;
  T *grad_og = grad.gate_grad + frame_size * 3;

  for (int i = 0; i < frame_size; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    r_checkI = value.check_ig ? value.check_ig[i] : 0;
    r_checkF = value.check_fg ? value.check_fg[i] : 0;
    r_checkO = value.check_og ? value.check_og[i] : 0;
    r_state = value.state_value[i];
    r_state_atv = value.state_active_value[i];
    r_output_grad = grad.output_grad[i];
    r_state_grad = grad.state_grad[i];
    if (value.prev_state_value) {
      r_prev_state = value.prev_state_value[i];
D
dangqingqing 已提交
133 134
    }

135 136 137 138
    op(&r_value_in, &r_value_ig, &r_value_fg, &r_value_og, &r_grad_in,
       &r_grad_ig, &r_grad_fg, &r_grad_og, &r_prev_state, &r_prev_state_grad,
       &r_state, &r_state_grad, &r_state_atv, &r_output_grad, &r_checkI,
       &r_checkF, &r_checkO, &r_checkIGrad, &r_checkFGrad, &r_checkOGrad,
139
       &cell_clip, active_node, active_gate, active_state);
140 141 142 143 144 145 146 147 148 149 150

    grad_in[i] = r_grad_in;
    grad_ig[i] = r_grad_ig;
    grad_fg[i] = r_grad_fg;
    grad_og[i] = r_grad_og;
    grad.state_grad[i] = r_state_grad;

    if (grad.prev_state_grad) grad.prev_state_grad[i] = r_prev_state_grad;
    if (value.prev_state_value) {
      if (grad.check_ig_grad) grad.check_ig_grad[i] += r_checkIGrad;
      if (grad.check_fg_grad) grad.check_fg_grad[i] += r_checkFGrad;
D
dangqingqing 已提交
151
    }
152
    if (grad.check_og_grad) grad.check_og_grad[i] += r_checkOGrad;
D
dangqingqing 已提交
153 154 155
  }
}

156
template <class T, class Op>
157
void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
158 159
                                   int frame_size, T cell_clip,
                                   ActivationType active_node,
160 161
                                   ActivationType active_gate,
                                   ActivationType active_state) {
D
dangqingqing 已提交
162
#ifdef __AVX__
163 164 165 166 167 168 169 170 171 172 173 174
  __m256 r_value_in;
  __m256 r_value_ig;
  __m256 r_value_fg;
  __m256 r_value_og;
  __m256 r_checkI = _mm256_set1_ps(0.0f);
  __m256 r_checkF = _mm256_set1_ps(0.0f);
  __m256 r_checkO = _mm256_set1_ps(0.0f);
  __m256 r_state;
  __m256 r_prev_state = _mm256_set1_ps(0.0f);
  __m256 r_state_atv;
  __m256 r_out;

175 176 177 178 179 180
  __m256 *value_in = reinterpret_cast<__m256 *>(value.gate_value);
  __m256 *value_ig = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
  __m256 *value_fg =
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  __m256 *value_og =
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 3);
181 182 183 184 185 186 187

  for (int i = 0; i < frame_size / 8; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    if (value.check_ig) {
188 189 190
      r_checkI = (reinterpret_cast<__m256 *>(value.check_ig))[i];
      r_checkF = (reinterpret_cast<__m256 *>(value.check_fg))[i];
      r_checkO = (reinterpret_cast<__m256 *>(value.check_og))[i];
D
dangqingqing 已提交
191
    }
D
dangqingqing 已提交
192

193
    if (value.prev_state_value) {
194
      r_prev_state = (reinterpret_cast<__m256 *>(value.prev_state_value))[i];
D
dangqingqing 已提交
195 196
    }

197 198
    op(&r_value_in, &r_value_ig, &r_value_fg, &r_value_og, &r_prev_state,
       &r_state, &r_state_atv, &r_out, &r_checkI, &r_checkF, &r_checkO,
199
       &cell_clip, active_node, active_gate, active_state);
200 201 202 203 204

    value_in[i] = r_value_in;
    value_ig[i] = r_value_ig;
    value_fg[i] = r_value_fg;
    value_og[i] = r_value_og;
205 206 207
    (reinterpret_cast<__m256 *>(value.state_value))[i] = r_state;
    (reinterpret_cast<__m256 *>(value.state_active_value))[i] = r_state_atv;
    (reinterpret_cast<__m256 *>(value.output_value))[i] = r_out;
D
dangqingqing 已提交
208 209 210 211
  }
#endif
}

212 213
template <class T, class Op>
void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
214
                                    LstmMetaGrad<T> grad, int frame_size,
215
                                    T cell_clip, ActivationType active_node,
216 217
                                    ActivationType active_gate,
                                    ActivationType active_state) {
D
dangqingqing 已提交
218
#ifdef __AVX__
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  __m256 r_value_in;
  __m256 r_value_ig;
  __m256 r_value_fg;
  __m256 r_value_og;
  __m256 r_grad_in;
  __m256 r_grad_ig;
  __m256 r_grad_fg;
  __m256 r_grad_og;
  __m256 r_prev_state = _mm256_set1_ps(0.0f);
  __m256 r_prev_state_grad;
  __m256 r_state_grad;
  __m256 r_state;
  __m256 r_state_atv;
  __m256 r_output_grad;
  __m256 r_checkI = _mm256_set1_ps(0.0f);
  __m256 r_checkF = _mm256_set1_ps(0.0f);
  __m256 r_checkO = _mm256_set1_ps(0.0f);
  __m256 r_checkIGrad;
  __m256 r_checkFGrad;
  __m256 r_checkOGrad;

240 241 242 243 244 245 246 247 248 249
  __m256 *value_in = reinterpret_cast<__m256 *>(value.gate_value);
  __m256 *value_ig = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
  __m256 *value_fg =
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  __m256 *value_og =
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 3);
  __m256 *grad_in = reinterpret_cast<__m256 *>(grad.gate_grad);
  __m256 *grad_ig = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size);
  __m256 *grad_fg = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size * 2);
  __m256 *grad_og = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size * 3);
250 251 252 253 254 255 256

  for (int i = 0; i < frame_size / 8; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    if (value.check_ig) {
257 258 259
      r_checkI = (reinterpret_cast<__m256 *>(value.check_ig))[i];
      r_checkF = (reinterpret_cast<__m256 *>(value.check_fg))[i];
      r_checkO = (reinterpret_cast<__m256 *>(value.check_og))[i];
D
dangqingqing 已提交
260
    }
261 262 263 264
    r_state = (reinterpret_cast<__m256 *>(value.state_value))[i];
    r_state_atv = (reinterpret_cast<__m256 *>(value.state_active_value))[i];
    r_output_grad = (reinterpret_cast<__m256 *>(grad.output_grad))[i];
    r_state_grad = (reinterpret_cast<__m256 *>(grad.state_grad))[i];
265
    if (value.prev_state_value) {
266
      r_prev_state = (reinterpret_cast<__m256 *>(value.prev_state_value))[i];
D
dangqingqing 已提交
267 268
    }

269 270 271 272
    op(&r_value_in, &r_value_ig, &r_value_fg, &r_value_og, &r_grad_in,
       &r_grad_ig, &r_grad_fg, &r_grad_og, &r_prev_state, &r_prev_state_grad,
       &r_state, &r_state_grad, &r_state_atv, &r_output_grad, &r_checkI,
       &r_checkF, &r_checkO, &r_checkIGrad, &r_checkFGrad, &r_checkOGrad,
273
       &cell_clip, active_node, active_gate, active_state);
274 275 276 277 278

    grad_in[i] = r_grad_in;
    grad_ig[i] = r_grad_ig;
    grad_fg[i] = r_grad_fg;
    grad_og[i] = r_grad_og;
279
    (reinterpret_cast<__m256 *>(grad.state_grad))[i] = r_state_grad;
280 281

    if (grad.prev_state_grad)
282
      (reinterpret_cast<__m256 *>(grad.prev_state_grad))[i] = r_prev_state_grad;
283
    if (value.prev_state_value) {
284 285 286 287
      if (grad.check_ig_grad)
        (reinterpret_cast<__m256 *>(grad.check_ig_grad))[i] += r_checkIGrad;
      if (grad.check_fg_grad)
        (reinterpret_cast<__m256 *>(grad.check_fg_grad))[i] += r_checkFGrad;
D
dangqingqing 已提交
288
    }
289 290
    if (grad.check_og_grad)
      (reinterpret_cast<__m256 *>(grad.check_og_grad))[i] += r_checkOGrad;
D
dangqingqing 已提交
291 292 293 294 295
  }
#endif
}

template <class T, class Op>
296
void cpu_lstm_forward(Op op, LstmMetaValue<T> value, int frame_size,
297 298
                      T cell_clip, ActivationType active_node,
                      ActivationType active_gate, ActivationType active_state) {
299
  if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same<T, float>::value)) {
300 301
    avx_lstm_forward_one_sequence<T>(op, value, frame_size, cell_clip,
                                     active_node, active_gate, active_state);
D
dangqingqing 已提交
302
  } else {
303 304
    naive_lstm_forward_one_sequence<T>(op, value, frame_size, cell_clip,
                                       active_node, active_gate, active_state);
D
dangqingqing 已提交
305 306 307 308
  }
}

template <class T, class Op>
309
void cpu_lstm_backward(Op op, LstmMetaValue<T> value, LstmMetaGrad<T> grad,
310
                       int frame_size, T cell_clip, ActivationType active_node,
311 312
                       ActivationType active_gate,
                       ActivationType active_state) {
313
  if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same<T, float>::value)) {
314 315
    avx_lstm_backward_one_sequence<T>(op, value, grad, frame_size, cell_clip,
                                      active_node, active_gate, active_state);
D
dangqingqing 已提交
316
  } else {
317
    naive_lstm_backward_one_sequence<T>(op, value, grad, frame_size, cell_clip,
318
                                        active_node, active_gate, active_state);
D
dangqingqing 已提交
319 320 321 322 323 324 325 326 327
  }
}

#endif

}  // namespace detail
}  // namespace math
}  // namespace operators
}  // namespace paddle