test.cc 33.6 KB
Newer Older
T
tensor-tang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
T
tensor-tang 已提交
14 15 16 17 18 19 20

#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24

25
DEFINE_double(acc, 1e-5, "Test accuracy threshold.");
26

T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
  if (std::is_floating_point<T>::value) {
    for (int i = 0; i < n; ++i) {
42
      EXPECT_NEAR(target[i], refer[i], FLAGS_acc);
T
tensor-tang 已提交
43 44 45 46 47 48 49 50
    }
  } else {
    for (int i = 0; i < n; ++i) {
      EXPECT_EQ(target[i], refer[i]);
    }
  }
}

T
tensor-tang 已提交
51 52
std::vector<int> TestSizes() {
  std::vector<int> s;
T
tensor-tang 已提交
53
  for (int i = 1; i < 32; ++i) {
T
tensor-tang 已提交
54 55
    s.push_back(i);
  }
T
tensor-tang 已提交
56 57 58 59
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  s.push_back(2000);
T
tensor-tang 已提交
60 61 62
  return s;
}

T
tensor-tang 已提交
63
namespace jit = paddle::operators::jit;
64
using CPUPlace = paddle::platform::CPUPlace;
T
tensor-tang 已提交
65 66 67

template <typename KernelTuples, typename... Args>
struct TestFuncWithRefer {
68 69 70
  void operator()(const typename KernelTuples::func_type tgt, Args... args) {
    LOG(FATAL) << "Should specify this function.";
  }
T
tensor-tang 已提交
71 72 73 74 75 76
};

template <typename T>
struct TestFuncWithRefer<jit::XYZNTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::XYZNTuples<T>::func_type tgt,
77 78
                  const std::vector<T>& x, const std::vector<T>& y,
                  const std::vector<T>& zref) {
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(zref.size(), x.size());
    EXPECT_EQ(zref.size(), y.size());
    const T* x_data = x.data();
    const T* y_data = y.data();
    const T* zref_data = zref.data();
    const int d = zref.size();

    std::vector<T> ztgt(d);
    T* ztgt_data = ztgt.data();
    // test normal
    tgt(x_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ztgt.begin());
    tgt(ztgt_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace y
    std::copy(y.begin(), y.end(), ztgt.begin());
    tgt(x_data, ztgt_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::AXYNTuples<T>::func_type tgt, const T a,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(&a, x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(&a, ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
template <typename T>
struct TestFuncWithRefer<jit::SoftmaxTuples<T>, std::vector<T>, std::vector<T>,
                         int, int> {
  void operator()(const typename jit::SoftmaxTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref, int n,
                  int bs) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    EXPECT_EQ(x.size(), static_cast<size_t>(n * bs));
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    std::vector<T> ytgt(n * bs);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, n, bs);
    ExpectEQ<T>(ytgt_data, yref_data, n * bs);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, n, bs);
    ExpectEQ<T>(ytgt_data, yref_data, n * bs);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::XRNTuples<T>, std::vector<T>, T> {
  void operator()(const typename jit::XRNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const T ref_res) {
    EXPECT_TRUE(tgt != nullptr);
    T tgt_res;
    tgt(x.data(), &tgt_res, x.size());
    ExpectEQ<T>(&tgt_res, &ref_res, 1);
  }
};

T
tensor-tang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
template <typename T>
struct TestFuncWithRefer<jit::XYNTuples<T>, std::vector<T>, std::vector<T>> {
  void operator()(const typename jit::XYNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
182 183
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         typename jit::LSTMTuples<T>::attr_type> {
T
tensor-tang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  void operator()(const typename jit::LSTMTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& wp,
                  const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
                  const std::vector<T>& ht_ref,
                  const typename jit::LSTMTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ct_ref.size(), ht_ref.size());
    EXPECT_EQ(ct_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
    EXPECT_EQ(wp.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ct(ct_ref.size()), ht(ht_ref.size());
    std::vector<T> checked(2 * d);
    std::copy(xsrc.begin(), xsrc.end(), x.begin());

    const T* ct_1_data = ct_1.data();
    const T* wp_data = wp.data();
    const T* ct_ref_data = ct_ref.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ct_data = ct.data();
    T* ht_data = ht.data();
    T* checked_data = checked.data();

210
    jit::lstm_t step;
T
tensor-tang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    step.gates = x_data;
    step.ct_1 = ct_1_data;
    step.ct = ct_data;
    step.ht = ht_data;
    if (attr.use_peephole) {
      step.wp = wp_data;
      step.checked = checked_data;
    }

    tgt(&step, &attr);
    ExpectEQ<T>(ct_data, ct_ref_data, d);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
228 229
                         std::vector<T>,
                         typename jit::GRUTuples<T>::attr_type> {
T
tensor-tang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  void operator()(const typename jit::GRUTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& ht_1,
                  const std::vector<T>& ht_ref,
                  const typename jit::GRUTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ht_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ht(ht_ref.size());
    std::copy(xsrc.begin(), xsrc.end(), x.begin());
    const T* ht_1_data = ht_1.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
246
    jit::gru_t step;
T
tensor-tang 已提交
247 248 249 250 251 252 253 254
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
    tgt(&step, &attr);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

255
template <typename T>
256 257
struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>, std::vector<T>,
                         typename jit::SeqPoolTuples<T>::attr_type> {
258 259 260 261
  void operator()(const typename jit::SeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref,
                  const typename jit::SeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
262
    EXPECT_EQ(x.size() % yref.size(), static_cast<size_t>(0));
263 264 265 266 267 268 269 270 271 272
    int w = yref.size();
    std::vector<T> y(w);
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    T* y_data = y.data();
    tgt(x_data, y_data, &attr);
    ExpectEQ<T>(y_data, yref_data, w);
  }
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
template <typename T>
struct TestFuncWithRefer<jit::EmbSeqPoolTuples<T>, std::vector<T>,
                         std::vector<int64_t>, std::vector<T>,
                         typename jit::EmbSeqPoolTuples<T>::attr_type> {
  void operator()(const typename jit::EmbSeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& table, const std::vector<int64_t>& idx,
                  const std::vector<T>& oref,
                  const typename jit::EmbSeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(table.size(),
              static_cast<size_t>(attr.table_height * attr.table_width));
    EXPECT_EQ(idx.size(),
              static_cast<size_t>(attr.index_height * attr.index_width));
    EXPECT_EQ(oref.size(),
              static_cast<size_t>(attr.table_width * attr.index_width));
    const T* table_data = table.data();
    const int64_t* idx_data = idx.data();
    const T* oref_data = oref.data();
    int o_w = oref.size();
    std::vector<T> out(o_w);
    T* o_data = out.data();
    tgt(table_data, idx_data, o_data, &attr);
    ExpectEQ<T>(o_data, oref_data, o_w);
  }
};

T
tensor-tang 已提交
299
template <typename T>
300
struct TestFuncWithRefer<jit::MatMulTuples<T>, std::vector<T>, std::vector<T>,
301 302
                         std::vector<T>,
                         typename jit::MatMulTuples<T>::attr_type> {
T
tensor-tang 已提交
303 304
  void operator()(const typename jit::MatMulTuples<T>::func_type tgt,
                  const std::vector<T>& a, const std::vector<T>& b,
305 306
                  const std::vector<T>& cref,
                  const typename jit::MatMulTuples<T>::attr_type& attr) {
T
tensor-tang 已提交
307
    EXPECT_TRUE(tgt != nullptr);
308 309 310
    EXPECT_EQ(a.size(), static_cast<size_t>(attr.m * attr.k));
    EXPECT_EQ(b.size(), static_cast<size_t>(attr.k * attr.n));
    EXPECT_EQ(cref.size(), static_cast<size_t>(attr.m * attr.n));
T
tensor-tang 已提交
311 312 313 314 315
    std::vector<T> c(cref.size());
    const T* a_data = a.data();
    const T* b_data = b.data();
    const T* cref_data = cref.data();
    T* c_data = c.data();
316 317
    tgt(a_data, b_data, c_data, &attr);
    ExpectEQ<T>(c_data, cref_data, attr.m * attr.n);
T
tensor-tang 已提交
318 319 320
  }
};

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
template <typename T>
struct TestFuncWithRefer<jit::LayerNormTuples<T>, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>, std::vector<T>, int, float, int> {
  void operator()(const typename jit::LayerNormTuples<T>::func_type tgt,
                  std::vector<T>& x, std::vector<T>& outref,  // NOLINT
                  std::vector<T>& mean, std::vector<T>& var,  // NOLINT
                  const std::vector<T>& scale, const std::vector<T>& bias,
                  int left, const float epsilon, int right) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size(), static_cast<size_t>(left * right));
    EXPECT_EQ(outref.size(), static_cast<size_t>(left * right));
    EXPECT_EQ(mean.size(), static_cast<size_t>(left));
    EXPECT_EQ(var.size(), static_cast<size_t>(left));
    EXPECT_EQ(scale.size(), static_cast<size_t>(right));
    EXPECT_EQ(bias.size(), static_cast<size_t>(right));
    std::vector<T> outtgt(outref.size());
    const T* scale_data = scale.data();
    const T* bias_data = bias.data();
    T* x_data = x.data();
    T* mean_data = mean.data();
    T* var_data = var.data();
    T* outref_data = outref.data();
    T* outtgt_data = outtgt.data();

    tgt(x_data, outtgt_data, mean_data, var_data, scale_data, bias_data, left,
        epsilon, right);
    ExpectEQ<T>(outtgt_data, outref_data, left * right);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::CRFDecodingTuples<T>, int, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<int>,
                         int> {
  void operator()(const typename jit::CRFDecodingTuples<T>::func_type tgt,
                  const int seq_len, const std::vector<T>& x,
                  const std::vector<T>& w, std::vector<T>& alpharef,  // NOLINT
                  std::vector<int>& trackref, int tag_num) {          // NOLINT
    constexpr int state_trans_base_idx = 2;
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size(), static_cast<size_t>(seq_len * tag_num));
    EXPECT_EQ(w.size(),
              static_cast<size_t>((tag_num + state_trans_base_idx) * tag_num));
    EXPECT_EQ(alpharef.size(), static_cast<size_t>(seq_len * tag_num));
    EXPECT_EQ(trackref.size(), static_cast<size_t>(seq_len * tag_num));
    std::vector<T> alphatgt(alpharef.size());
    std::vector<int> tracktgt(trackref.size());

    memcpy(trackref.data(), tracktgt.data(), tag_num * sizeof(int));
    tgt(seq_len, (const T*)x.data(), (const T*)w.data(), alphatgt.data(),
        tracktgt.data(), tag_num);
    ExpectEQ<T>(alpharef.data(), alphatgt.data(), seq_len * tag_num);
    ExpectEQ<int>(trackref.data(), tracktgt.data(), seq_len * tag_num);
  }
};

378 379
template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
          typename... Args>
T
tensor-tang 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  TestFuncWithRefer<KernelTuples, Args...> test;
  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    VLOG(10) << "Test Jitcode Kernel ";
    test(jitcode, args...);
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
395
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
396 397
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
398
        VLOG(10) << "Test More Kernel : " << i->ImplType();
T
tensor-tang 已提交
399 400 401 402 403
        test(more, args...);
      }
    }
  }
  // test result from Get function
T
tensor-tang 已提交
404
  // VLOG(10) << "Test Get function ";
T
tensor-tang 已提交
405 406
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  test(tgt, args...);
T
tensor-tang 已提交
407 408
}

409
template <jit::KernelType KT, typename T, typename PlaceType>
410
void TestXYZNKernel() {
411
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
T
tensor-tang 已提交
412
  for (int d : TestSizes()) {
413
    auto ref = jit::GetRefer<KT, jit::XYZNTuples<T>>();
T
tensor-tang 已提交
414 415
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
416
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
417 418 419
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
420 421 422 423 424 425 426 427 428 429 430
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
431
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
432 433 434 435 436
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

T
tensor-tang 已提交
437 438
    TestAllImpls<KT, jit::XYZNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>, std::vector<T>>(d, x, y, zref);
T
tensor-tang 已提交
439 440
  }
}
T
tensor-tang 已提交
441

442
template <jit::KernelType KT, typename T, typename PlaceType>
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
void TestAXYNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::AXYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    const T a = static_cast<T>(3);
    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
    RandomVec<T>(d, x.data());
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(&a, x_data, yref_data, d);
    ref(&a, xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
463 464
    TestAllImpls<KT, jit::AXYNTuples<T>, PlaceType, T, std::vector<T>,
                 std::vector<T>>(d, a, x, yref);
465 466 467
  }
}

468 469 470
template <jit::KernelType KT, typename T, typename PlaceType>
void TestXRNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
471 472
  auto last_acc = FLAGS_acc;
  FLAGS_acc = 1e-4;
473 474 475 476
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XRNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);
    std::vector<T> x(d);
T
tensor-tang 已提交
477
    RandomVec<T>(d, x.data(), -2.f, 2.f);
478 479 480 481 482
    T ref_res;
    ref(x.data(), &ref_res, d);
    TestAllImpls<KT, jit::XRNTuples<T>, PlaceType, std::vector<T>, T>(d, x,
                                                                      ref_res);
  }
483
  FLAGS_acc = last_acc;
484 485 486
}

template <jit::KernelType KT, typename T, typename PlaceType>
487 488 489 490 491 492 493 494
void TestXYNKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
495
    RandomVec<T>(d, x.data(), -2.f, 2.f);
496 497 498 499 500 501 502 503 504 505
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(x_data, yref_data, d);
    ref(xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
506 507
    TestAllImpls<KT, jit::XYNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>>(d, x, yref);
508 509 510
  }
}

511
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
void TestLSTMKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (bool use_peephole : {true, false}) {
      for (auto& act_gate : all_acts) {
        for (auto& act_cand : all_acts) {
          for (auto& act_cell : all_acts) {
            const jit::lstm_attr_t attr(
                d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
                jit::to_kerneltype(act_cell), use_peephole);
            auto ref = jit::GetRefer<KT, jit::LSTMTuples<T>>();
            EXPECT_TRUE(ref != nullptr);
            std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
            std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
            RandomVec<T>(4 * d, xsrc.data(), -2.f, 2.f);
528 529
            RandomVec<T>(3 * d, wp.data(), -1.f, 1.f);
            RandomVec<T>(d, ct_1.data(), -1.f, 1.f);
T
tensor-tang 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            // x could be changed after compute, so copy to save src
            std::vector<T> x(xsrc.size());
            std::copy(xsrc.begin(), xsrc.end(), x.begin());
            const T* ct_1_data = ct_1.data();
            const T* wp_data = wp.data();
            T* x_data = x.data();
            T* checked_data = checked.data();
            T* ct_ref_data = ct_ref.data();
            T* ht_ref_data = ht_ref.data();
            jit::lstm_t step;
            step.gates = x_data;
            step.ct_1 = ct_1_data;
            step.ct = ct_ref_data;
            step.ht = ht_ref_data;
            if (use_peephole) {
              step.wp = wp_data;
              step.checked = checked_data;
            }
            ref(&step, &attr);
T
tensor-tang 已提交
549
            VLOG(10) << attr;
T
tensor-tang 已提交
550 551 552 553
            TestAllImpls<KT, jit::LSTMTuples<T>, PlaceType, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>>(attr, xsrc, wp, ct_1, ct_ref, ht_ref,
                                         attr);
T
tensor-tang 已提交
554 555 556 557 558 559 560
          }
        }
      }
    }
  }
}

561
template <jit::KernelType KT, typename T, typename PlaceType>
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
void TestGRUKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (auto& act_gate : all_acts) {
      for (auto& act_cand : all_acts) {
        const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
                                   jit::to_kerneltype(act_cand));
        auto ref = jit::GetRefer<KT, jit::GRUTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
        RandomVec<T>(3 * d, xsrc.data(), -2.f, 2.f);
        RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
        // x could be changed after compute, so copy to save src
        std::vector<T> x(xsrc.size());
        std::copy(xsrc.begin(), xsrc.end(), x.begin());
        const T* ht_1_data = ht_1.data();
        T* x_data = x.data();
        T* ht_ref_data = ht_ref.data();
        jit::gru_t step;
        step.gates = x_data;
        step.ht_1 = ht_1_data;
        step.ht = ht_ref_data;
        ref(&step, &attr);
T
tensor-tang 已提交
586
        VLOG(10) << attr;
T
tensor-tang 已提交
587 588 589
        TestAllImpls<KT, jit::GRUTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>>(attr, xsrc, ht_1, ht_ref,
                                                     attr);
590 591 592 593 594
      }
    }
  }
}

595
template <jit::KernelType KT, typename T, typename PlaceType>
596 597
void TestSeqPoolKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
598 599
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
600
  for (auto type : pool_types) {
T
tensor-tang 已提交
601 602 603 604
    for (int w : TestSizes()) {
      jit::seq_pool_attr_t attr(w, type);
      for (int h : TestSizes()) {
        attr.h = h;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        auto ref = jit::GetRefer<KT, jit::SeqPoolTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(h * w), yref(w);
        RandomVec<T>(h * w, x.data(), -2.f, 2.f);
        const T* x_data = x.data();
        T* yref_data = yref.data();
        ref(x_data, yref_data, &attr);
        VLOG(10) << attr;
        TestAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>>(attr, x, yref, attr);
      }
    }
  }
}

620
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
621 622
void TestMatMulKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
623 624 625 626
  auto last_acc = FLAGS_acc;
  // TODO(intel): fix MKL acc issue
  // https://github.com/PaddlePaddle/Paddle/issues/15447
  FLAGS_acc = 1e-3;
T
tensor-tang 已提交
627 628 629 630 631 632
  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : TestSizes()) {
        auto ref = jit::GetRefer<KT, jit::MatMulTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> a(m * k), b(k * n), c(m * n);
633 634
        RandomVec<T>(m * k, a.data(), -2.f, 2.f);
        RandomVec<T>(k * n, b.data(), -2.f, 2.f);
T
tensor-tang 已提交
635 636 637
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
638 639
        const jit::matmul_attr_t attr{m, n, k};
        ref(a_data, b_data, c_data, &attr);
T
tensor-tang 已提交
640
        TestAllImpls<KT, jit::MatMulTuples<T>, PlaceType, std::vector<T>,
641
                     std::vector<T>, std::vector<T>>(attr, a, b, c, attr);
T
tensor-tang 已提交
642 643 644
      }
    }
  }
645
  FLAGS_acc = last_acc;
T
tensor-tang 已提交
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
template <jit::KernelType KT, typename T, typename PlaceType>
void TestSoftmaxKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      auto ref = jit::GetRefer<KT, jit::SoftmaxTuples<T>>();
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> x(bs * n), y(bs * n);
      RandomVec<T>(bs * n, x.data(), -2.f, 2.f);
      const T* x_data = x.data();
      T* y_data = y.data();

      std::vector<T> xinp(x.size());  // inplace test
      std::copy(x.begin(), x.end(), xinp.begin());
      ref(x_data, y_data, n, bs);
      T* xinp_data = xinp.data();
      ref(xinp_data, xinp_data, n, bs);
      ExpectEQ<T>(xinp_data, y_data, n * bs);

      TestAllImpls<KT, jit::SoftmaxTuples<T>, PlaceType, std::vector<T>,
                   std::vector<T>>(n, x, y, n, bs);
    }
  }
}

673 674 675 676 677 678 679 680 681 682 683 684
template <jit::KernelType KT, typename T, typename PlaceType>
void TestEmbSeqPoolKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  int64_t tbl_h = 1e4;
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum};  // only support sum yet
  for (int tbl_w : TestSizes()) {
    std::vector<T> table(tbl_h * tbl_w);
    RandomVec<T>(tbl_h * tbl_w, table.data(), -2.f, 2.f);
    const T* table_data = table.data();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
685
        for (int idx_h : {1, 2, 9, 13, 16}) {
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
          auto ref = jit::GetRefer<KT, jit::EmbSeqPoolTuples<T>>();
          EXPECT_TRUE(ref != nullptr);
          std::vector<int64_t> idx(idx_h * idx_w);
          RandomVec<int64_t>(idx_h * idx_w, idx.data(), 0, tbl_h - 1);
          int64_t out_w = tbl_w * idx_w;
          std::vector<T> oref(out_w);
          const int64_t* idx_data = idx.data();
          T* o_data = oref.data();
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          ref(table_data, idx_data, o_data, &attr);

          TestAllImpls<KT, jit::EmbSeqPoolTuples<T>, PlaceType, std::vector<T>,
                       std::vector<int64_t>, std::vector<T>>(attr, table, idx,
                                                             oref, attr);
        }
      }
    }
  }
}

707
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
void TestNCHW16CMulNCKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const int n = 3, c = 16 * 4, h = 10, w = 10;
  auto ref = jit::GetRefer<KT, jit::NCHW16CMulNCTuples<T>>();
  EXPECT_TRUE(ref != nullptr);
  int sz = n * c * h * w;
  std::vector<T> x(sz), y(n * c), zref(sz);
  std::vector<T> ztgt(sz), zjit(sz);
  RandomVec<T>(sz, x.data(), -2.f, 2.f);
  RandomVec<T>(n * c, y.data(), -2.f, 2.f);

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* zref_data = zref.data();
  T* ztgt_data = ztgt.data();
  T* zjit_data = zjit.data();
  constexpr int simd_width = ZMM_FLOAT_BLOCK;
  int C = c / simd_width;
  auto tgt = jit::Get<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  auto jitcode = jit::GetJitCode<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  EXPECT_TRUE(tgt != nullptr);

  if (std::is_same<T, float>::value &&
      paddle::platform::MayIUse(paddle::platform::avx512f)) {
    EXPECT_TRUE(jitcode != nullptr);
  }
  for (int ni = 0; ni < n; ni++) {
    for (int ci = 0; ci < C; ci++) {
      auto ptr_x =
          x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
      auto ptr_zref =
          zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_ztgt =
          ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;

      ref(ptr_x, ptr_y, ptr_zref, h, w);
      tgt(ptr_x, ptr_y, ptr_ztgt, h, w);

      if (jitcode) {
        auto ptr_zjit =
            zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
        jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
      }
    }
  }
  ExpectEQ<T>(ztgt_data, zref_data, sz);
  if (jitcode) {
    ExpectEQ<T>(zjit_data, zref_data, sz);
  }
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestLayerNormKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
        auto ref = jit::GetRefer<KT, jit::LayerNormTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        int sz = left * right;
        std::vector<T> x(sz), mean(left), var(left), scale(right), bias(right),
            outref(sz);
        RandomVec<T>(sz, x.data(), -2.f, 2.f);
        RandomVec<T>(left, mean.data(), -2.f, 2.f);
        RandomVec<T>(left, var.data(), -2.f, 2.f);
        RandomVec<T>(right, scale.data(), -2.f, 2.f);
        RandomVec<T>(right, bias.data(), -2.f, 2.f);

        const T* scale_data = scale.data();
        const T* bias_data = bias.data();
        T* x_data = x.data();
        T* mean_data = mean.data();
        T* var_data = var.data();
        T* outref_data = outref.data();

        ref(x_data, outref_data, mean_data, var_data, scale_data, bias_data,
            left, epsilon, right);

        TestAllImpls<KT, jit::LayerNormTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>, std::vector<T>,
                     std::vector<T>, std::vector<T>, int, float>(
            right, x, outref, mean, var, scale, bias, left, epsilon, right);
      }
    }
  }
}

template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestCRFDecodingKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  constexpr int state_trans_base_idx = 2;
  for (int seq_len : {1, 11, 17, 50}) {
    for (int tag_num : TestSizes()) {
      auto ref = jit::GetRefer<KT, jit::CRFDecodingTuples<T>>();
      EXPECT_TRUE(ref != nullptr);
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      std::vector<T> x(x_sz), w(w_sz), alpharef(x_sz);
      std::vector<int> trackref(x_sz);
      RandomVec<T>(x_sz, x.data(), -2.f, 2.f);
      RandomVec<T>(w_sz, w.data(), -2.f, 2.f);

      ref(seq_len, (const T*)x.data(), (const T*)w.data(), alpharef.data(),
          trackref.data(), tag_num);

      TestAllImpls<KT, jit::CRFDecodingTuples<T>, PlaceType, int,
                   std::vector<T>, std::vector<T>, std::vector<T>,
                   std::vector<int>, int>(tag_num, seq_len, x, w, alpharef,
                                          trackref, tag_num);
    }
  }
}

T
tensor-tang 已提交
825
// XYZNTuple
T
tensor-tang 已提交
826
TEST(JITKernel, kVMul) {
827 828
  TestXYZNKernel<jit::kVMul, float, CPUPlace>();
  TestXYZNKernel<jit::kVMul, double, CPUPlace>();
T
tensor-tang 已提交
829 830
}

T
tensor-tang 已提交
831
TEST(JITKernel, kVAdd) {
832 833
  TestXYZNKernel<jit::kVAdd, float, CPUPlace>();
  TestXYZNKernel<jit::kVAdd, double, CPUPlace>();
T
tensor-tang 已提交
834 835
}

T
tensor-tang 已提交
836
TEST(JITKernel, kVAddRelu) {
837 838
  TestXYZNKernel<jit::kVAddRelu, float, CPUPlace>();
  TestXYZNKernel<jit::kVAddRelu, double, CPUPlace>();
T
tensor-tang 已提交
839 840
}

T
tensor-tang 已提交
841
TEST(JITKernel, kVSub) {
842 843
  TestXYZNKernel<jit::kVSub, float, CPUPlace>();
  TestXYZNKernel<jit::kVSub, double, CPUPlace>();
T
tensor-tang 已提交
844 845 846
}

// AXYNTuples
T
tensor-tang 已提交
847
TEST(JITKernel, kVScal) {
848 849
  TestAXYNKernel<jit::kVScal, float, CPUPlace>();
  TestAXYNKernel<jit::kVScal, double, CPUPlace>();
T
tensor-tang 已提交
850 851
}

T
tensor-tang 已提交
852
TEST(JITKernel, kVAddBias) {
853 854 855 856 857 858 859 860 861 862 863 864 865
  TestAXYNKernel<jit::kVAddBias, float, CPUPlace>();
  TestAXYNKernel<jit::kVAddBias, double, CPUPlace>();
}

// XRNTuples
TEST(JITKernel, kHMax) {
  TestXRNKernel<jit::kHMax, float, CPUPlace>();
  TestXRNKernel<jit::kHMax, double, CPUPlace>();
}

TEST(JITKernel, kHSum) {
  TestXRNKernel<jit::kHSum, float, CPUPlace>();
  TestXRNKernel<jit::kHSum, double, CPUPlace>();
T
tensor-tang 已提交
866 867 868
}

// XYNTuples
T
tensor-tang 已提交
869
TEST(JITKernel, kVRelu) {
870 871
  TestXYNKernel<jit::kVRelu, float, CPUPlace>();
  TestXYNKernel<jit::kVRelu, double, CPUPlace>();
T
tensor-tang 已提交
872 873
}

T
tensor-tang 已提交
874
TEST(JITKernel, kVIdentity) {
875 876
  TestXYNKernel<jit::kVIdentity, float, CPUPlace>();
  TestXYNKernel<jit::kVIdentity, double, CPUPlace>();
T
tensor-tang 已提交
877 878
}

T
tensor-tang 已提交
879
TEST(JITKernel, kVSquare) {
880 881
  TestXYNKernel<jit::kVSquare, float, CPUPlace>();
  TestXYNKernel<jit::kVSquare, double, CPUPlace>();
T
tensor-tang 已提交
882 883
}

T
tensor-tang 已提交
884
TEST(JITKernel, kVExp) {
885 886
  TestXYNKernel<jit::kVExp, float, CPUPlace>();
  TestXYNKernel<jit::kVExp, double, CPUPlace>();
T
tensor-tang 已提交
887 888
}

T
tensor-tang 已提交
889
TEST(JITKernel, kVSigmoid) {
890 891
  TestXYNKernel<jit::kVSigmoid, float, CPUPlace>();
  TestXYNKernel<jit::kVSigmoid, double, CPUPlace>();
T
tensor-tang 已提交
892 893
}

T
tensor-tang 已提交
894
TEST(JITKernel, kVTanh) {
895 896
  TestXYNKernel<jit::kVTanh, float, CPUPlace>();
  TestXYNKernel<jit::kVTanh, double, CPUPlace>();
T
tensor-tang 已提交
897 898 899
}

// LSTM
T
tensor-tang 已提交
900
TEST(JITKernel, kLSTMCtHt) {
901 902
  TestLSTMKernel<jit::kLSTMCtHt, float, CPUPlace>();
  TestLSTMKernel<jit::kLSTMCtHt, double, CPUPlace>();
T
tensor-tang 已提交
903 904
}

T
tensor-tang 已提交
905
TEST(JITKernel, kLSTMC1H1) {
906 907
  TestLSTMKernel<jit::kLSTMC1H1, float, CPUPlace>();
  TestLSTMKernel<jit::kLSTMC1H1, double, CPUPlace>();
T
tensor-tang 已提交
908 909 910
}

// GRU
T
tensor-tang 已提交
911
TEST(JITKernel, kGRUH1) {
912 913
  TestGRUKernel<jit::kGRUH1, float, CPUPlace>();
  TestGRUKernel<jit::kGRUH1, double, CPUPlace>();
914 915
}

T
tensor-tang 已提交
916
TEST(JITKernel, kGRUHtPart1) {
917 918
  TestGRUKernel<jit::kGRUHtPart1, float, CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart1, double, CPUPlace>();
919 920
}

T
tensor-tang 已提交
921
TEST(JITKernel, kGRUHtPart2) {
922 923
  TestGRUKernel<jit::kGRUHtPart2, float, CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart2, double, CPUPlace>();
924 925
}

926
TEST(JITKernel, kSeqPool) {
927 928
  TestSeqPoolKernel<jit::kSeqPool, float, CPUPlace>();
  TestSeqPoolKernel<jit::kSeqPool, double, CPUPlace>();
929 930
}

T
tensor-tang 已提交
931
TEST(JITKernel, kMatMul) {
932 933 934 935 936 937 938
  TestMatMulKernel<jit::kMatMul, float, CPUPlace>();
  TestMatMulKernel<jit::kMatMul, double, CPUPlace>();
}

TEST(JITKernel, kSoftmax) {
  TestSoftmaxKernel<jit::kSoftmax, float, CPUPlace>();
  TestSoftmaxKernel<jit::kSoftmax, double, CPUPlace>();
T
tensor-tang 已提交
939 940
}

941 942 943 944 945
TEST(JITKernel, kEmbSeqPool) {
  TestEmbSeqPoolKernel<jit::kEmbSeqPool, float, CPUPlace>();
  TestEmbSeqPoolKernel<jit::kEmbSeqPool, double, CPUPlace>();
}

T
tensor-tang 已提交
946
TEST(JITKernel, kNCHW16CMulNC) {
947 948
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, float, CPUPlace>();
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, double, CPUPlace>();
T
tensor-tang 已提交
949 950
}

951 952 953 954 955 956 957 958 959 960
TEST(JITKernel, kLayerNorm) {
  TestLayerNormKernel<jit::kLayerNorm, float, paddle::platform::CPUPlace>();
  TestLayerNormKernel<jit::kLayerNorm, double, paddle::platform::CPUPlace>();
}

TEST(JITKernel, kCRFDecoding) {
  TestCRFDecodingKernel<jit::kCRFDecoding, float, paddle::platform::CPUPlace>();
  TestCRFDecodingKernel<jit::kCRFDecoding, double,
                        paddle::platform::CPUPlace>();
}
T
tensor-tang 已提交
961

962 963 964
TEST(JITKernel, pool) {
  // TODO(TJ): add some test
}