yolov3_loss_op.h 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35
static T SigmoidCrossEntropy(T x, T label) {
36 37 38
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

D
dengkaipeng 已提交
39 40 41 42 43
template <typename T>
static T L2Loss(T x, T y) {
  return 0.5 * (y - x) * (y - x);
}

44
template <typename T>
45
static T SigmoidCrossEntropyGrad(T x, T label) {
46 47 48
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

D
dengkaipeng 已提交
49 50 51 52 53
template <typename T>
static T L2LossGrad(T x, T y) {
  return x - y;
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
65
  T x, y, w, h;
66 67 68 69 70 71 72 73
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
D
dengkaipeng 已提交
124
                                int input_size, int stride) {
125 126 127 128 129
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

D
dengkaipeng 已提交
130
  T scale = (2.0 - gt.w * gt.h);
131 132
  loss[0] += SigmoidCrossEntropy<T>(input[box_idx], tx) * scale;
  loss[0] += SigmoidCrossEntropy<T>(input[box_idx + stride], ty) * scale;
D
dengkaipeng 已提交
133 134
  loss[0] += L2Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L2Loss<T>(input[box_idx + 3 * stride], th) * scale;
135 136 137 138 139 140
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
D
dengkaipeng 已提交
141
                                    int grid_size, int input_size, int stride) {
142 143 144 145 146
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

D
dengkaipeng 已提交
147
  T scale = (2.0 - gt.w * gt.h);
148 149
  input_grad[box_idx] =
      SigmoidCrossEntropyGrad<T>(input[box_idx], tx) * scale * loss;
150
  input_grad[box_idx + stride] =
151
      SigmoidCrossEntropyGrad<T>(input[box_idx + stride], ty) * scale * loss;
152
  input_grad[box_idx + 2 * stride] =
D
dengkaipeng 已提交
153
      L2LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
154
  input_grad[box_idx + 3 * stride] =
D
dengkaipeng 已提交
155
      L2LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
156 157 158 159
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
D
dengkaipeng 已提交
160
                                 const int label, const int class_num,
D
dengkaipeng 已提交
161
                                 const int stride) {
D
dengkaipeng 已提交
162 163
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
164
    loss[0] += SigmoidCrossEntropy<T>(pred, (i == label) ? 1.0 : 0.0);
165 166 167 168 169 170
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
D
dengkaipeng 已提交
171
                                     const int label, const int class_num,
D
dengkaipeng 已提交
172
                                     const int stride) {
D
dengkaipeng 已提交
173 174 175
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
    input_grad[index + i * stride] =
176
        SigmoidCrossEntropyGrad<T>(pred, (i == label) ? 1.0 : 0.0) * loss;
177 178 179 180
  }
}

template <typename T>
D
dengkaipeng 已提交
181
static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
182 183 184 185 186 187 188
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
189
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
190
          if (obj > 1e-5) {
191 192
            // positive sample: obj = 1
            loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 1.0);
D
dengkaipeng 已提交
193 194
          } else if (obj > -0.5) {
            // negetive sample: obj = 0
195
            loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 0.0);
196 197 198 199 200 201 202 203 204 205 206
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
D
dengkaipeng 已提交
207
                                       const T* input, const T* objness,
208 209 210 211 212 213 214
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
215
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
216
          if (obj > 1e-5) {
217 218
            input_grad[k * w + l] =
                SigmoidCrossEntropyGrad<T>(input[k * w + l], 1.0) * loss[i];
D
dengkaipeng 已提交
219
          } else if (obj > -0.5) {
220 221
            input_grad[k * w + l] =
                SigmoidCrossEntropyGrad<T>(input[k * w + l], 0.0) * loss[i];
222 223 224 225 226 227 228 229 230 231
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

248
template <typename T>
249 250 251 252
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
253 254
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
255
    auto* loss = ctx.Output<Tensor>("Loss");
256 257
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
258
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
259
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
260 261
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
262
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
263 264 265 266 267

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
268 269
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
270
    int input_size = downsample_ratio * h;
271

272 273 274
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

275 276 277
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
278
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
279
    memset(loss_data, 0, loss->numel() * sizeof(T));
D
dengkaipeng 已提交
280 281 282
    T* obj_mask_data =
        objness_mask->mutable_data<T>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(T));
283 284
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
285

286 287 288 289 290 291
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

292 293 294 295
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
296 297
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
298
            int box_idx =
D
dengkaipeng 已提交
299 300 301
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
302 303
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
304
              if (!gt_valid_mask_data[i * b + t]) {
305 306
                continue;
              }
307
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
308
              T iou = CalcBoxIoU(pred, gt);
309 310 311 312 313
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

314
            // If best IoU is bigger then ignore_thresh,
315
            // ignore the objectness loss.
316 317
            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
D
dengkaipeng 已提交
318
              obj_mask_data[obj_idx] = static_cast<T>(-1);
319
            }
320 321 322
            // all losses should be calculated if best IoU
            // is bigger then truth thresh, but currently,
            // truth thresh is an unreachable value as 1.0.
323 324 325 326
          }
        }
      }
      for (int t = 0; t < b; t++) {
327
        if (!gt_valid_mask_data[i * b + t]) {
328
          gt_match_mask_data[i * b + t] = -1;
329 330
          continue;
        }
331
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
332 333 334 335 336 337 338
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
339 340 341
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
342 343 344 345 346 347
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
348
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
349 350 351 352 353 354
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
355
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
356
        gt_match_mask_data[i * b + t] = mask_idx;
357
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
358 359
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
360
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
D
dengkaipeng 已提交
361
                                 box_idx, gi, gj, h, input_size, stride);
362 363

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
D
dengkaipeng 已提交
364
          obj_mask_data[obj_idx] = 1.0;
365 366

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
367 368
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
D
dengkaipeng 已提交
369
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
D
dengkaipeng 已提交
370
                           class_num, stride);
371 372 373 374
        }
      }
    }

375
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
376
                       mask_num, h, w, stride, an_stride);
377 378 379
  }
};

380
template <typename T>
381 382 383
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
384
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
385 386
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
387 388
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
389 390
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
391
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
392
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
393
    int class_num = ctx.Attr<int>("class_num");
394
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
395

396 397 398 399
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
400
    const int mask_num = anchor_mask.size();
401
    const int b = gt_match_mask->dims()[1];
402
    int input_size = downsample_ratio * h;
403

404 405 406
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

407 408 409 410
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
    const T* loss_grad_data = loss_grad->data<T>();
D
dengkaipeng 已提交
411
    const T* obj_mask_data = objness_mask->data<T>();
412
    const int* gt_match_mask_data = gt_match_mask->data<int>();
413 414
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
415 416 417 418
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
419
        int mask_idx = gt_match_mask_data[i * b + t];
420
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
421 422 423 424
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
425 426
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
D
dengkaipeng 已提交
427 428 429
          CalcBoxLocationLossGrad<T>(
              input_grad_data, loss_grad_data[i], input_data, gt, anchors,
              anchor_mask[mask_idx], box_idx, gi, gj, h, input_size, stride);
430 431

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
432 433
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
434
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
D
dengkaipeng 已提交
435
                               label_idx, label, class_num, stride);
436 437 438 439 440
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
441
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
442
                           h, w, stride, an_stride);
443 444 445 446 447
  }
};

}  // namespace operators
}  // namespace paddle