memory_optimize_pass.cc 25.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
#include <algorithm>
#include <fstream>
#include <limits>
#include <map>
#include <string>
21
#include <type_traits>
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace inference {
namespace analysis {

using framework::ir::Graph;
using framework::ir::Node;
using framework::ir::TopologyVarientSort;
using space_table_t = MemoryOptimizePass::space_table_t;

// Collect the lifecycles of the tensors.
// Traverse the graph in topological order.
// The traversal order also affect the lifecycles, so different sort_kind is
// used.
void MemoryOptimizePass::CollectLifeCycle(
    std::unordered_map<std::string, lifecycle_t>* lifecycles,
    int sort_kind) const {
  max_lifecycle_ = 0;
  for (auto* op_node : framework::ir::TopologyVarientSort(
           *graph_, static_cast<framework::ir::SortKind>(sort_kind))) {
    if (!op_node->IsOp()) continue;
    auto reads = op_node->inputs;
    auto writes = op_node->outputs;

    std::vector<Node*> requires(reads.begin(), reads.end());
    requires.insert(requires.end(), writes.begin(), writes.end());

    // Disable reuse of feed variables.
    if (op_node->Name() == "feed") {
      for (auto* node : op_node->outputs) {
        auto var = node->Name();
        lifecycles->emplace(var,
                            std::make_pair(0, std::numeric_limits<int>::max()));
      }
    } else {
      // Normal operators.
      for (const Node* node : requires) {
        if (node->Var()->Persistable()) continue;
        std::string var = node->Name();
        if (!lifecycles->count(var)) {
          (*lifecycles)[var] = std::make_pair(max_lifecycle_, max_lifecycle_);
        } else {
          (*lifecycles)[var].second =
              std::max(max_lifecycle_, lifecycles->at(var).second);  // max()
        }
      }
    }

    ++max_lifecycle_;
  }
}

// TODO(Superjomn) Make this a general help method.
int DataTypeToSpace(framework::proto::VarType_Type type) {
  switch (type) {
    case framework::proto::VarType_Type_BOOL:
      return sizeof(bool);
    case framework::proto::VarType_Type_FP32:
      return sizeof(float);
    case framework::proto::VarType_Type_INT32:
      return sizeof(int32_t);
    case framework::proto::VarType_Type_INT64:
      return sizeof(int64_t);
    default:
      PADDLE_THROW("Unknown data type");
  }
}

// Collect the memory size of the tensors.
void MemoryOptimizePass::CollectVarMemorySize(
    const std::unordered_map<std::string, size_t>& batch_var_ave_dim,
    std::unordered_map<std::string, Node*>* tensor_nodes,
    space_table_t* space_table) const {
  // Collect tensors from graph.
  for (auto* node : graph_->Nodes()) {
    if (node->IsVar() &&
        node->Var()->GetType() ==
            framework::proto::VarType::Type::VarType_Type_LOD_TENSOR) {
      // Parameters will not be reused.
      if (node->Var()->Persistable()) continue;
      (*tensor_nodes)[node->Name()] = node;
      (*space_table)[node->Name()] =
          DataTypeToSpace(node->Var()->GetDataType()) *
          batch_var_ave_dim.at(node->Name());
    }
  }
}

// Find a sutable (big enough but smallest to avoid memory waste).
//
// Args:
// @tensor_nodes: the tensor nodes in the ir::Graph.
// @free_existing_tensors: the allocated tensor and are free.
// @space_table: the memory space of tensors.
// @tensor2use: the tensor that requires memory.
//
// Returns:
// true if found some existing tensor to reuse.
// false if no sutable tensor to reuse, one need to allocate a new tensor for
// this requirement.
// The suitable tensor for reuse is one that is approximately equal to the
// memory demand.
bool FindSuitableTensorToReuse(
    const std::string& tensor, int space_required,
    const std::unordered_map<std::string, Node*>& tensor_nodes,
    std::unordered_set<std::string>* free_existing_tensors,
    const space_table_t& space_table,
    const std::vector<std::unordered_set<std::string>>& var_clusters,
    std::string* tensor2use) __SHOULD_USE_RESULT__;

bool FindSuitableTensorToReuse(
    const std::string& tensor, int space_required,
    const std::unordered_map<std::string, Node*>& tensor_nodes,
    std::unordered_set<std::string>* free_existing_tensors,
    const space_table_t& space_table,
    const std::vector<std::unordered_set<std::string>>& var_clusters,
    std::string* tensor2use) {
  std::pair<std::string, size_t> best_fit;
  best_fit.second = std::numeric_limits<int>::max();
  VLOG(5) << "Split Tensors to " << var_clusters.size() << " clusters";

  // find the cluster this var belongs to.
  const std::unordered_set<std::string>* cluster = nullptr;
  for (const auto& c : var_clusters) {
    if (c.count(tensor)) {
      cluster = &c;
      break;
    }
  }
  PADDLE_ENFORCE_NOT_NULL(cluster,
                          "something wrong in memory optimization, the "
                          "variable %s not in the clusters.",
                          tensor);

  for (auto& candidate : *free_existing_tensors) {
    // This is not a temporary tensor.
    if (!space_table.count(candidate)) continue;
    // Not in the same cluster.
    if (!cluster->count(candidate)) continue;

    size_t space = space_table.at(candidate);
172 173 174 175 176
    PADDLE_ENFORCE(
        space <= std::numeric_limits<std::make_signed<size_t>::type>::max(),
        "space overload");
    size_t space_diff =
        std::abs((std::make_signed<size_t>::type)space - space_required);
Y
Yan Chunwei 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    if (space_diff < best_fit.second) {
      best_fit.first = candidate;
      best_fit.second = space_diff;
    }
  }

  if (best_fit.second < std::numeric_limits<int>::max()) {
    *tensor2use = best_fit.first;
    return true;
  }
  return false;
}

// Allocate new tensor instead of reusing the existing one.
void AllocateNewTensor(
    const std::string& name, size_t space_required,
    const std::unordered_map<std::string, Node*>& tensor_nodes,
    std::unordered_set<std::string>* free_existing_tensors,
    space_table_t* space_table,
    std::unordered_map<std::string, std::string>* reuse_table) {
  // The newly born tensor is free to be used.
  free_existing_tensors->insert(name);
  // Register the space it has.
  PADDLE_ENFORCE(space_table->count(name));
  space_table->at(name) = std::max(space_table->at(name), space_required);
  // The allocated new tensor use the memory of itself.
  (*reuse_table)[name] = name;
}

// Free a tensor and make it resuable.
// @tensor: the tensor to free.
// @free_existing_tensors: the free and allocated tensors.
// @reuse_table: a map from a fake tensor to the existing allocated tensor.
void FreeATensor(const std::string& tensor,
                 std::unordered_set<std::string>* free_existing_tensors,
                 std::unordered_map<std::string, std::string>* reuse_table) {
  if (tensor == "feed" || tensor == "fetch") return;
  // the really allocated tensor.
  const auto& free_tensor = reuse_table->at(tensor);

  free_existing_tensors->insert(free_tensor);
}

// Reuse a free existing tensor.
void ReuseATensor(const std::string& tensor, const std::string& tensor2reuse,
                  size_t memory_size,
                  std::unordered_set<std::string>* free_existing_tensors,
                  std::unordered_map<std::string, std::string>* reuse_table,
                  space_table_t* reused_space_table) {
  auto it = free_existing_tensors->find(tensor2reuse);
  PADDLE_ENFORCE(it != free_existing_tensors->end());
  free_existing_tensors->erase(it);
  (*reuse_table)[tensor] = tensor2reuse;
  // Update the memory size of a reused tensor, the memory will grow if the
  // required memory is larger.
  (*reused_space_table)[tensor2reuse] =
      std::max(reused_space_table->at(tensor2reuse), memory_size);
}

// Calculate the memory usage.
void EvaluateMemoryUsage(
    const std::unordered_map<std::string, std::string>& reuse_table,
    const space_table_t& space_table,
    const std::unordered_map<std::string, size_t>& var_batch_ave_size,
    size_t* allocated, size_t* saved) {
  *allocated = 0;
  *saved = 0;

  for (auto elem : reuse_table) {
    if (elem.first == elem.second) {
      *allocated += space_table.at(elem.first);
      VLOG(4) << elem.first << " <-> " << elem.second << " "
              << space_table.at(elem.first) << " "
              << space_table.at(elem.second);
    } else {
      *saved += space_table.at(elem.first);
      VLOG(4) << "reuse " << elem.first << " -> " << elem.second;
    }
  }
  VLOG(4) << "allocated " << *allocated;
  VLOG(4) << "saved " << *saved;
}

// Return saved ratio.
void MemoryOptimizePass::MakeReusePlan(
    const std::vector<std::unordered_set<std::string>>& var_clusters,
    const std::unordered_map<std::string, size_t>& var_batch_ave_size,
    const space_table_t& space_table,
    std::unordered_map<std::string, std::string>* reuse_table, int sort_kind,
    MemoryAllocation* memory_allocation) const {
  // Clear the existing plan.
  reuse_table->clear();

  // The `space_table` stores the real memory size for each tensor.
  // The `reused_space_table` stores the maximum memory size required by a
  // tensor during the memory reusing, the small tensor might be reused by a
  // larger tensor, and the memory size of the small one will grow.
  auto reused_space_table = space_table;

  std::unordered_map<std::string, lifecycle_t> life_cycles;
  std::unordered_map<std::string, Node*> tensor_nodes;
  // The allocated tensors whose memory can be reused, they will live across the
  // program execution.
  std::unordered_set<std::string> existing_tensors;
  // The existing tensor that has been allocated, and is also free to reuse.
  std::unordered_set<std::string> free_existing_tensors;

  CollectLifeCycle(&life_cycles, sort_kind);

  for (int age = 0; age < max_lifecycle_; ++age) {
    std::unordered_set<std::string> born_tensors;
    std::unordered_set<std::string> dead_tensors;
    // Gather the dead and born tensors.
    for (auto elem_it = life_cycles.begin(); elem_it != life_cycles.end();
         elem_it++) {
      if (elem_it->second.first == -1) {
        continue;
      }
      const auto& tensor = elem_it->first;
      const auto& lifecycle = elem_it->second;
      VLOG(4) << "process " << tensor << " reuse " << lifecycle.first << "->"
              << lifecycle.second;

      // Collect newly born tensors.
      if (lifecycle.first == age) {
        born_tensors.insert(tensor);
      }
      // Collect dead tensors whose memory can be reused.
      else if (lifecycle.second < age) {  // NOLINT
        dead_tensors.insert(tensor);
        // remove to avoid duplicate process.
        elem_it->second.first = -1;  // avoid duplicate search
      }
    }

    // Reuse the dead tensors for born tensors
    for (const auto& tensor : born_tensors) {
      // Skip the feed and fetch tensor for that they share data with others.
      std::string tensor2reuse;
      if (!space_table.count(tensor)) continue;
      size_t space_required = space_table.at(tensor);
      if (FindSuitableTensorToReuse(tensor, space_required, tensor_nodes,
                                    &free_existing_tensors, reused_space_table,
                                    var_clusters, &tensor2reuse)) {
        if (tensor != tensor2reuse) {
          VLOG(4) << tensor << " -> " << tensor2reuse;
        }
        ReuseATensor(tensor, tensor2reuse, space_required,
                     &free_existing_tensors, reuse_table, &reused_space_table);
      } else {
        VLOG(4) << "allocate " << tensor;
        AllocateNewTensor(tensor, space_required, tensor_nodes,
                          &free_existing_tensors, &reused_space_table,
                          reuse_table);
        ReuseATensor(tensor, tensor, space_required, &free_existing_tensors,
                     reuse_table, &reused_space_table);
      }
    }

    for (const auto& tensor : dead_tensors) {
      // free its memory.
      FreeATensor(tensor, &free_existing_tensors, reuse_table);
    }
  }

  EvaluateMemoryUsage(*reuse_table, reused_space_table, var_batch_ave_size,
                      &(memory_allocation->allocated),
                      &(memory_allocation->saved));
  memory_allocation->sort_kind = sort_kind;
}

void BuildVarNodeTable(Graph* graph,
                       std::unordered_map<std::string, Node*>* var_node_table) {
  for (auto* node : graph->Nodes()) {
    if (node->IsVar()) {
      (*var_node_table)[node->Name()] = node;
    }
  }
}

// NOTE The optimized opdesc doesn't match ir::Graph.
void UpdateOpDescsByReuse(
    Graph* graph,
    const std::unordered_map<std::string, std::string>& reuse_table,
    int sort_kind) {
  // TODO(Superjomn) change here to be compatible with the runtime order.
  for (auto* node : TopologyVarientSort(
           *graph, static_cast<framework::ir::SortKind>(sort_kind))) {
    if (node->IsOp()) {
      // Replace the original inputs/outputs with the reused tensors.
      std::unordered_map<std::string, std::vector<std::string>> in_args,
          out_args;
      for (auto argument : node->Op()->Inputs()) {
        for (const auto& x : argument.second) {
          auto name = x;
          if (reuse_table.count(x) && reuse_table.at(x) != x) {
            name = reuse_table.at(x);
          }
          in_args[argument.first].push_back(name);
          VLOG(4) << node->Name() << " input " << x << " -> " << name;
        }
      }

      for (auto argument : node->Op()->Outputs()) {
        for (const auto& x : argument.second) {
          auto name = x;
          if (reuse_table.count(x) && reuse_table.at(x) != x) {
            name = reuse_table.at(x);
          }
          out_args[argument.first].push_back(name);
          VLOG(4) << node->Name() << " output " << x << " -> " << name;
        }
      }

      // Update arguments.
      for (auto& arg : in_args) {
        node->Op()->SetInput(arg.first, arg.second);
      }
      for (auto& arg : out_args) {
        node->Op()->SetOutput(arg.first, arg.second);
      }
      node->Op()->Flush();
    }
  }
}

void MemoryOptimizePass::PerformReusePlan(
    const std::unordered_map<std::string, std::string>& reuse_table,
    int sort_kind, std::unordered_set<std::string>* vars2remove) const {
  std::unordered_map<std::string, Node*> var_node_table;
  BuildVarNodeTable(graph_, &var_node_table);
  UpdateOpDescsByReuse(graph_, reuse_table, sort_kind);

  for (auto& item : reuse_table) {
    if (item.first != item.second) {
      vars2remove->insert(item.first);
    }
  }
  VLOG(2) << "to remove vars " << vars2remove->size();
}

std::vector<std::string> split(const std::string& line, char delim) {
  std::vector<std::string> res;
  std::string field;
  std::stringstream line_stream(line);
  while (std::getline(line_stream, field, delim)) {
    res.emplace_back(field);
  }
  return res;
}

// Deserialize the batch var shapes from the cache file.
std::vector<std::map<std::string, std::vector<int>>> DeseralizeBatchVarShapes(
    const std::string& path) {
  std::ifstream file(path);
  PADDLE_ENFORCE(file.is_open(), "failed to open %s  to read cache", path);
  std::string line;
  std::vector<std::map<std::string, std::vector<int>>> batch_shapes;

  while (std::getline(file, line)) {
    std::map<std::string, std::vector<int>> batch;
    for (const auto& var_info : split(line, ';')) {
      auto fields = split(var_info, ':');
      PADDLE_ENFORCE_EQ(fields.size(), 2UL);
      auto var_name = fields.front();
      auto shape_str = split(fields[1], ',');
      std::vector<int> shape;
      for (const auto& v : shape_str) shape.push_back(std::stoi(v));
      batch[var_name] = shape;
    }
    batch_shapes.push_back(batch);
  }
  return batch_shapes;
}

Y
Yan Chunwei 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
// Replace the -1 in shape to a real number to fake the shape.
std::vector<std::map<std::string, std::vector<int>>> FakeBatchVarShapes(
    const framework::ProgramDesc& program) {
  std::vector<std::map<std::string, std::vector<int>>> res;
  res.emplace_back();
  auto& record = res.front();
  const int fake_batch_size = 3;
  for (auto* var : program.Block(0).AllVars()) {
    if (var->GetType() ==
        framework::proto::VarType::Type::VarType_Type_LOD_TENSOR) {
      auto shape = var->GetShape();
      for (auto& v : shape) {
        if (v < 0) v = fake_batch_size;
      }
      record[var->Name()].assign(shape.begin(), shape.end());
    }
  }
  return res;
}

Y
Yan Chunwei 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
// Calculate the average dim of each tensor from the batch shape cache.
std::unordered_map<std::string, size_t> GetBatchAverageSize(
    const std::vector<std::map<std::string, std::vector<int>>>& batches) {
  std::unordered_map<std::string, size_t> var2size;
  // The average size of the batches for each variable.
  int num_batch = 0;
  for (const auto& batch : batches) {
    num_batch++;
    for (const auto& item : batch) {
      int dim = std::accumulate(item.second.begin(), item.second.end(), 1,
                                [](int a, int b) { return a * b; });
      var2size[item.first] += dim;
    }
  }

  for (auto& item : var2size) {
    item.second /= num_batch;
  }

  return var2size;
}

// Analysis the batch shapes loading from the cache file.
// By splitting the variables to different clusters by analyzing their batch
// size, we can pre-schedule the changes of difference LoDTensor when different
// length of input sequences is entered.
// This should works fine for the models operating on sentences.
std::vector<std::unordered_set<std::string>> AnalysisBatchShapesByBatchSize(
    const std::vector<std::map<std::string, std::vector<int>>>& batches) {
  // collect the batch size of each shape and combine to a stringstream in
  // converient to generate a hash.
  std::unordered_map<std::string, std::stringstream> var_batchsize_hashes;
  for (auto& batch : batches) {
    for (auto& ele : batch) {
Y
Yan Chunwei 已提交
506
      PADDLE_ENFORCE(!ele.second.empty());
Y
Yan Chunwei 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
      int batch_size = ele.second.front();
      // TODO(Superjomn) might consume large memory here, use combine hash.
      var_batchsize_hashes[ele.first] << batch_size;
    }
  }

  // Split to sets by batch size sequences.
  std::unordered_map<size_t /*hash*/, std::unordered_set<std::string>>
      shape_sets;
  for (auto& ele : var_batchsize_hashes) {
    auto hash = std::hash<std::string>()(ele.second.str());
    shape_sets[hash].insert(ele.first);
  }
  std::vector<std::unordered_set<std::string>> res;
  for (auto& ele : shape_sets) {
    res.emplace_back(std::move(ele.second));
  }

  VLOG(3) << "Cluster by batch_size and get " << res.size() << " clusters";
  return res;
}

// Analysis the batch shapes loading from the cache file, and split them to
// different clusters by their size.
// This should works fine for the overall models.
std::vector<std::unordered_set<std::string>> AnalysisBatchShapesBySimilarSize(
    const space_table_t& space_table,
    const std::vector<std::map<std::string, std::vector<int>>>& batches,
    int interval = 200000) {
  PADDLE_ENFORCE_GT(interval, 0);
  // cluster to different clusters.
  size_t max_size = 0;
  for (auto& item : space_table) {
    max_size = std::max(item.second, max_size);
  }
  VLOG(4) << "tensor max size " << max_size;

  std::vector<std::unordered_set<std::string>> res;

  // cluster by intervals.
  for (size_t interval_size = 0; interval_size <= max_size;
       interval_size += interval) {
    std::unordered_set<std::string> cluster;
    for (auto& item : space_table) {
      if (interval_size <= item.second &&
          interval_size + interval > item.second) {
        cluster.insert(item.first);
      }
    }
    if (!cluster.empty()) {
      res.push_back(cluster);
    }
  }

  VLOG(3) << "Cluster by interval and get " << res.size() << " cluster";
  return res;
}

std::string MemoryOptimizePass::repr() const { return "memory optimize pass"; }

Y
Yan Chunwei 已提交
567 568 569 570 571 572 573 574 575 576 577
std::pair<size_t, size_t> GetRange(
    const std::unordered_map<std::string, size_t>& ave_size) {
  auto res = std::make_pair(std::numeric_limits<size_t>::max(),
                            std::numeric_limits<size_t>::min());
  for (auto& item : ave_size) {
    res.first = std::min(item.second, res.first);
    res.second = std::max(item.second, res.second);
  }
  return res;
}

Y
Yan Chunwei 已提交
578 579
void MemoryOptimizePass::RunImpl(Argument* argument) {
  // When force update, should not optimize memory.
Y
Yan Chunwei 已提交
580 581
  if (!argument->enable_memory_optim() ||
      argument->static_memory_optim_force_update())
Y
Yan Chunwei 已提交
582 583 584 585 586 587 588 589
    return;
  graph_ = argument->main_graph_ptr();

  auto path = GetMemoryCachePath(
      argument->model_dir_valid() ? argument->model_dir() : "",
      argument->model_program_path_valid() ? argument->model_program_path()
                                           : "");
  VLOG(3) << "Load memory cache from " << path;
Y
Yan Chunwei 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
  std::vector<std::map<std::string, std::vector<int>>> batches;

  if (argument->static_memory_optim() && inference::IsFileExists(path)) {
    string::PrettyLogInfo("--- Performing static memory optimize");
    batches = DeseralizeBatchVarShapes(path);
  } else {
    string::PrettyLogInfo("--- Performing dynamic memory optimize");
    batches = FakeBatchVarShapes(argument->main_program());
  }
  auto var_batch_ave_size = GetBatchAverageSize(batches);

  // Get min and max memory size.
  const auto range = GetRange(var_batch_ave_size);
  const int cluster_size = std::max(
      static_cast<int>((range.second - range.first) / 100 /*cluster num*/),
      1024);
  const int cluster_size1 = std::max(
      static_cast<int>((range.second - range.first) / 1000 /*cluster num*/),
      1024);
Y
Yan Chunwei 已提交
609

Y
Yan Chunwei 已提交
610 611 612
  std::unordered_map<std::string, Node*> tensor_nodes;
  space_table_t space_table;
  CollectVarMemorySize(var_batch_ave_size, &tensor_nodes, &space_table);
Y
Yan Chunwei 已提交
613

Y
Yan Chunwei 已提交
614 615
  std::unordered_map<std::string, std::string> reuse_table;
  double max_saving_ratio = 0.;
Y
Yan Chunwei 已提交
616

Y
Yan Chunwei 已提交
617
  std::vector<std::function<MemoryAllocation()>> strategies;
Y
Yan Chunwei 已提交
618

Y
Yan Chunwei 已提交
619 620 621
  for (int sort_kind = 0; sort_kind < 2; sort_kind++) {
    if (argument->static_memory_optim()) {
      // This strategy only make scene in static memory optimize.
Y
Yan Chunwei 已提交
622 623 624 625 626 627 628 629
      strategies.emplace_back([&, sort_kind] {
        auto clustered_vars_by_batch_size =
            AnalysisBatchShapesByBatchSize(batches);
        MemoryAllocation allocation;
        MakeReusePlan(clustered_vars_by_batch_size, var_batch_ave_size,
                      space_table, &reuse_table, sort_kind, &allocation);
        return allocation;
      });
Y
Yan Chunwei 已提交
630
    }
Y
Yan Chunwei 已提交
631

Y
Yan Chunwei 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    strategies.emplace_back([&, sort_kind] {
      auto clustered_vars_by_ave_size =
          AnalysisBatchShapesBySimilarSize(space_table, batches, cluster_size);
      MemoryAllocation allocation;
      MakeReusePlan(clustered_vars_by_ave_size, var_batch_ave_size, space_table,
                    &reuse_table, sort_kind, &allocation);
      return allocation;
    });

    strategies.emplace_back([&, sort_kind] {
      auto clustered_vars_by_ave_size =
          AnalysisBatchShapesBySimilarSize(space_table, batches, cluster_size1);
      MemoryAllocation allocation;
      MakeReusePlan(clustered_vars_by_ave_size, var_batch_ave_size, space_table,
                    &reuse_table, sort_kind, &allocation);
      return allocation;
    });

    strategies.emplace_back([&, sort_kind] {
      auto clustered_vars_by_ave_size = AnalysisBatchShapesBySimilarSize(
          space_table, batches,
          std::numeric_limits<int>::max());  // no intervals
      MemoryAllocation allocation;
      MakeReusePlan(clustered_vars_by_ave_size, var_batch_ave_size, space_table,
                    &reuse_table, sort_kind, &allocation);
      return allocation;
    });
  }
Y
Yan Chunwei 已提交
660

Y
Yan Chunwei 已提交
661
  std::function<MemoryAllocation()>* best_strategy{nullptr};
Y
Yan Chunwei 已提交
662

Y
Yan Chunwei 已提交
663 664 665 666 667 668 669 670
  // Try all strategies to get the best result.
  for (auto& strategy : strategies) {
    auto allocation = strategy();
    string::PrettyLogDetail("--- get strategy saving %f memory for workspace",
                            allocation.GetSavingRatio());
    if (allocation.GetSavingRatio() > max_saving_ratio) {
      max_saving_ratio = allocation.GetSavingRatio();
      best_strategy = &strategy;
Y
Yan Chunwei 已提交
671
    }
Y
Yan Chunwei 已提交
672 673 674 675 676 677
  }
  if (!best_strategy) {
    LOG(ERROR) << "This model makes poor memory optimize, skip memory optimize";
    return;
  }
  auto memory_allocation = (*best_strategy)();
Y
Yan Chunwei 已提交
678

Y
Yan Chunwei 已提交
679 680 681
  string::PrettyLogInfo(
      "--- Saved %.2f%s memory for workspace(temporary variables)",
      memory_allocation.GetSavingRatio() * 100, "%");
Y
Yan Chunwei 已提交
682

Y
Yan Chunwei 已提交
683 684 685 686 687 688 689 690
  argument->main_graph().Set(framework::ir::kGraphToProgramVarsToRemove,
                             new std::unordered_set<std::string>);
  auto& vars2remove =
      argument->main_graph().Get<std::unordered_set<std::string>>(
          framework::ir::kGraphToProgramVarsToRemove);

  PerformReusePlan(reuse_table, memory_allocation.sort_kind, &vars2remove);
  argument->SetMemoryOptimSortKind(memory_allocation.sort_kind);
Y
Yan Chunwei 已提交
691 692 693 694 695 696 697 698
}

float MemoryOptimizePass::MemoryAllocation::GetSavingRatio() const {
  return (saved / 1024.) / (allocated / 1024. + saved / 1024.);
}
}  // namespace analysis
}  // namespace inference
}  // namespace paddle