strided_slice_op_npu.cc 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/strided_slice_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/slice_op.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class StridedSliceNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    PADDLE_ENFORCE_EQ(is_tensor_array, false,
                      platform::errors::InvalidArgument(
                          "Tensor array as input is not supported."));
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of input is supported up to 6."));
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& ctx) const {
    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    auto in = ctx.Input<framework::Tensor>("Input");
    auto out = ctx.Output<framework::Tensor>("Out");
    auto in_dims = in->dims();

    // list<int>
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
    auto strides_int = ctx.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

    auto axes = ctx.Attr<std::vector<int>>("axes");
    auto infer_flags = ctx.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    // vector<Tensor<int32>>
    auto list_new_ends_tensor =
        ctx.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        ctx.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        ctx.MultiInput<framework::Tensor>("StridesTensorList");

    // Tensor<int32>
    if (list_new_starts_tensor.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
    } else if (ctx.HasInput("StartsTensor")) {
      auto* starts_tensor = ctx.Input<framework::Tensor>("StartsTensor");
      starts = GetDataFromTensor<int64_t>(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
    } else if (ctx.HasInput("EndsTensor")) {
      auto* ends_tensor = ctx.Input<framework::Tensor>("EndsTensor");
      ends = GetDataFromTensor<int64_t>(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
    } else if (ctx.HasInput("StridesTensor")) {
      auto* strides_tensor = ctx.Input<framework::Tensor>("StridesTensor");
      strides = GetDataFromTensor<int64_t>(strides_tensor);
    }

    // out dims calculation
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

    // check whether need to reverse (false: stride > 0; true: stride < 0)
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());

    // construct the starts_indices, ends_indices and strides_indices tensor for
    // calling StridedSlice op
    std::vector<int64_t> starts_indices_vector(D, 0);
    std::vector<int64_t> ends_indices_vector(out_dims_vector.begin(),
                                             out_dims_vector.end());
    std::vector<int64_t> strides_indices_vector(D, 1);

    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices_vector[axis_index] = starts[axis];
      ends_indices_vector[axis_index] = ends[axis];
      strides_indices_vector[axis_index] = strides[axis];
    }

    Tensor starts_indices_tensor;
    Tensor ends_indices_tensor;
    Tensor strides_indices_tensor;

    starts_indices_tensor.mutable_data<int64_t>({D}, place);
    ends_indices_tensor.mutable_data<int64_t>({D}, place);
    strides_indices_tensor.mutable_data<int64_t>({D}, place);

    TensorFromVector(starts_indices_vector, ctx.device_context(),
                     &starts_indices_tensor);
    TensorFromVector(ends_indices_vector, ctx.device_context(),
                     &ends_indices_tensor);
    TensorFromVector(strides_indices_vector, ctx.device_context(),
                     &strides_indices_tensor);

    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
      std::vector<int64_t> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        PADDLE_ENFORCE_EQ(
            out_dims[decrease_axis[i]], 1,
            platform::errors::InvalidArgument(
                "the size of decrease dimension should be 1, but received %d.",
                out_dims[decrease_axis[i]]));
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

    out->Resize(out_dims);
    out->mutable_data<T>(place);

    const auto& runner = NpuOpRunner(
        "StridedSlice", {*in, starts_indices_tensor, ends_indices_tensor,
                         strides_indices_tensor},
        {*out}, {{"begin_mask", 0},
                 {"end_mask", 0},
                 {"ellipsis_mask", 0},
                 {"new_axis_mask", 0},
                 {"shrink_axis_mask", 0}});
    runner.Run(stream);

    if (need_reverse) {
      Tensor out_tmp;
      out_tmp.mutable_data<T>(out_dims, place);
      TensorCopy(*out, place,
                 ctx.template device_context<platform::DeviceContext>(),
                 &out_tmp);

      Tensor reverse_axis;
      std::vector<int> reverse_axis_vector;
      for (size_t axis = 0; axis < axes.size(); axis++) {
        if (reverse_vector[axis] == 1) {
          reverse_axis_vector.push_back(axes[axis]);
        }
      }
      reverse_axis.mutable_data<int>(
          {static_cast<int>(reverse_axis_vector.size())}, place);
      TensorFromVector(reverse_axis_vector, ctx.device_context(),
                       &reverse_axis);

      const auto& runner_reverse =
          NpuOpRunner("ReverseV2", {out_tmp, reverse_axis}, {*out});
      runner_reverse.Run(stream);
    }

    if (decrease_axis.size() > 0) {
      out->Resize(out_dims_origin);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
    strided_slice,
    ops::StridedSliceNPUKernel<paddle::platform::NPUDeviceContext, bool>,
    ops::StridedSliceNPUKernel<paddle::platform::NPUDeviceContext, int>,
    ops::StridedSliceNPUKernel<paddle::platform::NPUDeviceContext, int64_t>,
    ops::StridedSliceNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::StridedSliceNPUKernel<paddle::platform::NPUDeviceContext, double>);