multiplex_op.cu 3.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/op_registry.h"
16
#include "paddle/operators/multiplex_op.h"
Y
Yibing Liu 已提交
17

Y
Yibing Liu 已提交
18 19 20
namespace paddle {
namespace operators {

Y
Yibing Liu 已提交
21 22
using Tensor = framework::Tensor;

Y
Yibing Liu 已提交
23 24 25 26
template <typename Place, typename T>
class MultiplexGPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
Y
Yibing Liu 已提交
27 28
    auto ins = ctx.MultiInput<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
Y
Yibing Liu 已提交
29 30 31 32 33
    out->mutable_data<T>(ctx.GetPlace());

    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
    // copy index to cpu
Y
Yibing Liu 已提交
34
    Tensor index_t_cpu;
Y
Yibing Liu 已提交
35 36 37 38 39 40 41
    index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace());
    auto* index = index_t_cpu.data<T>();
    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    Place place = boost::get<Place>(ctx.GetPlace());
    for (auto i = 0; i < rows; i++) {
Y
Yibing Liu 已提交
42
      size_t k = (size_t)index[i] + 1;
Y
Yibing Liu 已提交
43 44 45 46 47 48 49 50 51 52 53 54
      PADDLE_ENFORCE_LT(k, ins.size(),
                        "index exceeds the number of candidate tensors.");
      memory::Copy(place, out->data<T>() + i * cols, place,
                   ins[k]->data<T>() + i * cols, cols * sizeof(T), stream);
    }
  }
};

template <typename Place, typename T>
class MultiplexGradGPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
Y
Yibing Liu 已提交
55 56 57
    auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<Tensor>("X");
    auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
Y
Yibing Liu 已提交
58 59 60 61 62 63 64 65 66 67 68
    for (size_t i = 1; i < d_ins.size(); i++) {
      if (d_ins[i]) {
        d_ins[i]->mutable_data<T>(ctx.GetPlace());
        auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
        t.device(ctx.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
      }
    }

    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
    // copy index to cpu
Y
Yibing Liu 已提交
69
    Tensor index_t_cpu;
Y
Yibing Liu 已提交
70 71 72 73 74 75 76 77
    index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace());
    auto* index = index_t_cpu.data<T>();

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    Place place = boost::get<Place>(ctx.GetPlace());
    for (auto i = 0; i < rows; i++) {
Y
Yibing Liu 已提交
78
      size_t k = (size_t)index[i] + 1;
Y
Yibing Liu 已提交
79 80 81 82 83 84 85 86 87 88
      if (d_ins[k]) {
        memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
                     d_out->data<T>() + i * cols, cols * sizeof(T), stream);
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle

Y
Yibing Liu 已提交
89 90
namespace ops = paddle::operators;

Y
Yibing Liu 已提交
91 92
REGISTER_OP_GPU_KERNEL(
    multiplex, ops::MultiplexGPUKernel<paddle::platform::GPUPlace, float>);
93 94
REGISTER_OP_GPU_KERNEL(
    multiplex_grad,
Y
Yibing Liu 已提交
95
    ops::MultiplexGradGPUKernel<paddle::platform::GPUPlace, float>);