test_flip.py 3.5 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
from op_test import OpTest


class TestFlipOp_API(unittest.TestCase):
    """Test flip api."""

    def test_static_graph(self):
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            dims = [0]
            input = fluid.data(name='input', dtype='float32', shape=[2, 3])
            output = paddle.flip(input, dims)
            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup_program)
            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            res = exe.run(train_program,
                          feed={'input': img},
                          fetch_list=[output])
            out_np = np.array(res[0])
            out_ref = np.array([[4, 5, 6], [1, 2, 3]]).astype(np.float32)
            self.assertTrue(
                (out_np == out_ref).all(),
                msg='flip output is wrong, out =' + str(out_np))

    def test_dygraph(self):
        img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
        with fluid.dygraph.guard():
            inputs = fluid.dygraph.to_variable(img)
            ret = paddle.flip(inputs, [0])
            out_ref = np.array([[4, 5, 6], [1, 2, 3]]).astype(np.float32)
            self.assertTrue(
                (ret.numpy() == out_ref).all(),
                msg='flip output is wrong, out =' + str(ret.numpy()))


class TestFlipOp(OpTest):
    def setUp(self):
        self.op_type = 'flip'
        self.init_test_case()
        self.inputs = {'X': np.random.random(self.in_shape).astype('float64')}
        self.init_attrs()
        self.outputs = {'Out': self.calc_ref_res()}

    def init_attrs(self):
        self.attrs = {"dims": self.dims}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")

    def init_test_case(self):
        self.in_shape = (6, 4, 2, 3)
        self.dims = [0, 1]

    def calc_ref_res(self):
        res = self.inputs['X']
        for axis in self.dims:
            res = np.flip(res, axis)
        return res


class TestFlipOpAxis1(TestFlipOp):
    def init_test_case(self):
        self.in_shape = (2, 4, 4)
        self.dims = [0]


class TestFlipOpAxis2(TestFlipOp):
    def init_test_case(self):
        self.in_shape = (4, 4, 6, 3)
        self.dims = [0, 2]


class TestFlipOpAxis3(TestFlipOp):
    def init_test_case(self):
        self.in_shape = (4, 3, 1)
        self.dims = [0, 1, 2]


class TestFlipOpAxis4(TestFlipOp):
    def init_test_case(self):
        self.in_shape = (6, 4, 2, 2)
        self.dims = [0, 1, 2, 3]


if __name__ == "__main__":
    unittest.main()