common.py 5.3 KB
Newer Older
Y
Yi Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import os
Y
Yi Liu 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready

OpRole = core.op_proto_and_checker_maker.OpRole

OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OP_ROLE_VAR_KEY = core.op_proto_and_checker_maker.kOpRoleVarAttrName()


def is_update_op(op):
    return 'Param' in op.input_names and 'Grad' in op.input_names and \
            "LearningRate" in op.input_names


def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


def is_backward_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Backward)


def is_optimizer_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Optimize)


class CollectiveHelper(object):
    def __init__(self, role_maker, nrings=1, wait_port='6174'):
        self.nrings = nrings
        self.wait_port = wait_port
        self.role_maker = role_maker

    def update_startup_program(self, startup_program=None):
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

61 62
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
Y
Yi Liu 已提交
63 64 65
        for ring_id in range(self.nrings):
            self._init_communicator(
                self.startup_program, current_endpoint, endpoints,
66
                self.role_maker._worker_index(), ring_id, self.wait_port)
Y
Yi Liu 已提交
67 68 69 70 71 72 73 74
        self._broadcast_params()

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        block = program.global_block()
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        if core.is_compiled_with_cuda():
            if rank == 0 and wait_port:
                wait_server_ready(other_endpoints)
            nccl_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': nccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    OP_ROLE_KEY: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': nccl_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    OP_ROLE_KEY: OpRole.Forward
                })
        elif core.is_compiled_with_npu():
            endpoint_to_index_map = {
                e: idx for idx, e in enumerate(endpoints)
            }
            block.append_op(
                type='c_comm_init_hcom',
                inputs={},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
                    'rank_ids': [endpoint_to_index_map[e] for e in endpoints],
                    OP_ROLE_KEY: OpRole.Forward
                })
Y
Yi Liu 已提交
118

119 120 121 122 123 124
    def _wait(self, current_endpoint, endpoints):
        assert (self.wait_port)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        wait_server_ready(other_endpoints)

Y
Yi Liu 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def _broadcast_params(self):
        block = self.startup_program.global_block()
        ring_id = -1
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            ring_id = (ring_id + 1) % self.nrings
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       OP_ROLE_KEY: OpRole.Forward})