ops.py 21.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn, add_sample_code
C
chengduo 已提交
18
from .. import core
19 20
from ..framework import convert_np_dtype_to_dtype_, Variable
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21
from paddle.utils import deprecated
Y
Yang Yu 已提交
22

23
__activations_noattr__ = [
24 25 26 27
    'sigmoid',
    'logsigmoid',
    'exp',
    'tanh',
28
    'atan',
29 30
    'tanh_shrink',
    'sqrt',
Z
zhoukunsheng 已提交
31
    'rsqrt',
32 33 34
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
35
    'cos',
36 37
    'acos',
    'asin',
C
add sin  
chengduoZH 已提交
38
    'sin',
39 40
    'sinh',
    'cosh',
41 42 43 44 45
    'round',
    'reciprocal',
    'square',
    'softplus',
    'softsign',
Y
Yu Yang 已提交
46 47
]

X
Xin Pan 已提交
48
__all__ = []
Y
Yang Yu 已提交
49

Y
Yu Yang 已提交
50
for _OP in set(__all__):
51
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
52

S
sneaxiy 已提交
53 54 55 56 57
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
58 59
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

60 61 62
__all__ += __activations_noattr__

for _OP in set(__activations_noattr__):
63
    globals()[_OP] = generate_activation_fn(_OP)
64

65 66 67 68 69 70 71
add_sample_code(globals()["sigmoid"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
72
        paddle.disable_static()
73 74

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
75
        x = paddle.to_variable(x_data)
76 77 78 79 80 81 82 83 84 85 86 87 88
        out = F.sigmoid(x)
        print(out.numpy())
        # [0.40131234 0.450166   0.52497919 0.57444252]

""")

add_sample_code(globals()["logsigmoid"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
89
        paddle.disable_static()
90 91

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
92
        x = paddle.to_variable(x_data)
93 94 95 96 97 98 99 100 101 102 103 104
        out = F.logsigmoid(x)
        print(out.numpy())
        # [-0.91301525 -0.79813887 -0.64439666 -0.55435524]

""")

add_sample_code(globals()["exp"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
105
        paddle.disable_static()
106 107

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
108
        x = paddle.to_variable(x_data)
109 110 111 112 113 114 115 116 117 118 119 120
        out = paddle.exp(x)
        print(out.numpy())
        # [0.67032005 0.81873075 1.10517092 1.34985881]

""")

add_sample_code(globals()["tanh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
121
        paddle.disable_static()
122 123

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
124
        x = paddle.to_variable(x_data)
125 126 127 128 129 130 131 132 133 134 135 136
        out = paddle.tanh(x)
        print(out.numpy())
        # [-0.37994896 -0.19737532  0.09966799  0.29131261]

""")

add_sample_code(globals()["atan"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
137
        paddle.disable_static()
138 139

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
140
        x = paddle.to_variable(x_data)
141 142 143 144 145 146 147 148 149 150 151 152 153
        out = paddle.atan(x)
        print(out.numpy())
        # [-0.38050638 -0.19739556  0.09966865  0.29145679]

""")

add_sample_code(globals()["tanh_shrink"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
154
        paddle.disable_static()
155 156

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
157
        x = paddle.to_variable(x_data)
158 159 160 161 162 163 164 165 166 167 168 169
        out = F.tanh_shrink(x)
        print(out.numpy())
        # [-0.02005104 -0.00262468  0.00033201  0.00868739]

""")

add_sample_code(globals()["sqrt"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
170
        paddle.disable_static()
171 172

        x_data = np.array([0.1, 0.2, 0.3, 0.4])
173
        x = paddle.to_variable(x_data)
174 175 176 177 178 179 180 181 182 183 184 185
        out = paddle.sqrt(x)
        print(out.numpy())
        # [0.31622777 0.4472136  0.54772256 0.63245553]

""")

add_sample_code(globals()["rsqrt"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
186
        paddle.disable_static()
187 188

        x_data = np.array([0.1, 0.2, 0.3, 0.4])
189
        x = paddle.to_variable(x_data)
190 191 192 193 194 195 196 197 198 199 200 201
        out = paddle.rsqrt(x)
        print(out.numpy())
        # [3.16227766 2.23606798 1.82574186 1.58113883]

""")

add_sample_code(globals()["abs"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
202
        paddle.disable_static()
203 204

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
205
        x = paddle.to_variable(x_data)
206 207 208 209 210 211 212 213 214 215 216 217
        out = paddle.abs(x)
        print(out.numpy())
        # [0.4 0.2 0.1 0.3]

""")

add_sample_code(globals()["ceil"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
218
        paddle.disable_static()
219 220

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
221
        x = paddle.to_variable(x_data)
222 223 224 225 226 227 228 229 230 231 232 233
        out = paddle.ceil(x)
        print(out.numpy())
        # [-0. -0.  1.  1.]

""")

add_sample_code(globals()["floor"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
234
        paddle.disable_static()
235 236

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
237
        x = paddle.to_variable(x_data)
238 239 240 241 242 243 244 245 246 247 248 249
        out = paddle.floor(x)
        print(out.numpy())
        # [-1. -1.  0.  0.]

""")

add_sample_code(globals()["cos"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
250
        paddle.disable_static()
251 252

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
253
        x = paddle.to_variable(x_data)
254 255 256 257 258 259 260 261 262 263 264 265
        out = paddle.cos(x)
        print(out.numpy())
        # [0.92106099 0.98006658 0.99500417 0.95533649]

""")

add_sample_code(globals()["acos"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
266
        paddle.disable_static()
267 268

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
269
        x = paddle.to_variable(x_data)
270 271 272 273 274 275 276 277 278 279 280 281
        out = paddle.acos(x)
        print(out.numpy())
        # [1.98231317 1.77215425 1.47062891 1.26610367]

""")

add_sample_code(globals()["sin"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
282
        paddle.disable_static()
283 284

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
285
        x = paddle.to_variable(x_data)
286 287 288 289 290 291 292 293 294 295 296 297
        out = paddle.sin(x)
        print(out.numpy())
        # [-0.38941834 -0.19866933  0.09983342  0.29552021]

""")

add_sample_code(globals()["asin"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
298
        paddle.disable_static()
299 300

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
301
        x = paddle.to_variable(x_data)
302 303 304 305 306 307 308 309 310 311 312 313
        out = paddle.asin(x)
        print(out.numpy())
        # [-0.41151685 -0.20135792  0.10016742  0.30469265]

""")

add_sample_code(globals()["cosh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
314
        paddle.disable_static()
315 316

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
317
        x = paddle.to_variable(x_data)
318 319 320 321 322 323 324 325 326 327 328 329
        out = paddle.cosh(x)
        print(out.numpy())
        # [1.08107237 1.02006676 1.00500417 1.04533851]

""")

add_sample_code(globals()["sinh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
330
        paddle.disable_static()
331 332

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
333
        x = paddle.to_variable(x_data)
334 335 336 337 338 339 340 341 342 343 344 345
        out = paddle.sinh(x)
        print(out.numpy())
        # [-0.41075233 -0.201336    0.10016675  0.30452029]

""")

add_sample_code(globals()["round"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
346
        paddle.disable_static()
347 348

        x_data = np.array([-0.5, -0.2, 0.6, 1.5])
349
        x = paddle.to_variable(x_data)
350 351 352 353 354 355 356 357 358 359 360 361
        out = paddle.round(x)
        print(out.numpy())
        # [-1. -0.  1.  2.]

""")

add_sample_code(globals()["reciprocal"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
362
        paddle.disable_static()
363 364

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
365
        x = paddle.to_variable(x_data)
366 367 368 369 370 371 372 373 374 375 376 377
        out = paddle.reciprocal(x)
        print(out.numpy())
        # [-2.5        -5.         10.          3.33333333]

""")

add_sample_code(globals()["square"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
378
        paddle.disable_static()
379 380

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
381
        x = paddle.to_variable(x_data)
382 383 384 385 386 387 388 389 390 391 392 393 394
        out = paddle.square(x)
        print(out.numpy())
        # [0.16 0.04 0.01 0.09]

""")

add_sample_code(globals()["softplus"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
395
        paddle.disable_static()
396 397

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
398
        x = paddle.to_variable(x_data)
399 400 401 402 403 404 405 406 407 408 409 410 411
        out = F.softplus(x)
        print(out.numpy())
        # [0.51301525 0.59813887 0.74439666 0.85435524]

""")

add_sample_code(globals()["softsign"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
412
        paddle.disable_static()
413 414

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
415
        x = paddle.to_variable(x_data)
416 417 418 419 420 421
        out = F.softsign(x)
        print(out.numpy())
        # [-0.28571429 -0.16666667  0.09090909  0.23076923]

""")

422 423 424 425 426 427
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
428 429 430
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')

431 432 433 434 435 436 437 438 439 440 441 442
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
443 444 445
	:alias_main: paddle.nn.functional.softshrink
	:alias: paddle.nn.functional.softshrink,paddle.nn.functional.activation.softshrink
	:old_api: paddle.fluid.layers.softshrink
S
swtkiwi 已提交
446

447 448 449
:strong:`Softshrink Activation Operator`

..  math::
450 451 452 453 454
    out = \\begin{cases}
            x - \\alpha, \\text{if } x > \\alpha \\\\
            x + \\alpha, \\text{if } x < -\\alpha \\\\
            0,  \\text{otherwise}
          \\end{cases}
455 456 457


Args:
458 459
    x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
    alpha (float): non-negative offset
460 461
    
Returns:
462
    Output of Softshrink operator with the same type of input.
463 464 465 466 467

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
468
        data = fluid.data(name="input", shape=[None, 784])
469 470 471
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
472 473 474 475 476
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


477
@deprecated(since="2.0.0", update_to="paddle.nn.functional.hardshrink")
Y
yuyang18 已提交
478
def hard_shrink(x, threshold=None):
479 480 481
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hard_shrink')

482
    locals_var = locals().copy()
Y
yuyang18 已提交
483
    kwargs = dict()
484
    for name, val in locals_var.items():
Y
yuyang18 已提交
485 486 487 488 489
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
490
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
Y
yuyang18 已提交
491 492
Examples:

493
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
494 495 496
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
497

W
wopeizl 已提交
498 499 500 501 502
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


503 504 505 506
@deprecated(
    since="2.0.0",
    update_to="paddle.cumsum",
    reason="New APIs for Paddle 2.0 are coming.")
W
wopeizl 已提交
507
def cumsum(x, axis=None, exclusive=None, reverse=None):
508
    check_type(x, 'x', (Variable), 'cumsum')
509
    locals_var = locals().copy()
W
wopeizl 已提交
510
    kwargs = dict()
511
    for name, val in locals_var.items():
W
wopeizl 已提交
512 513 514 515 516
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


L
liu zhengxi 已提交
517
cumsum.__doc__ = """
518 519 520
	:alias_main: paddle.cumsum
	:alias: paddle.cumsum,paddle.tensor.cumsum,paddle.tensor.math.cumsum
	:old_api: paddle.fluid.layers.cumsum
S
swtkiwi 已提交
521

L
liu zhengxi 已提交
522
The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
W
wopeizl 已提交
523

L
liu zhengxi 已提交
524 525
Args:
    x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. 
T
tianshuo78520a 已提交
526
    axis (int, optional): The dimension to accumulate along. -1 means the last dimension. Default is -1.
L
liu zhengxi 已提交
527 528 529 530 531 532 533 534 535 536 537 538
    exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False.
    reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False.

Returns:
    Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. 

Examples:
    .. code-block:: python
        
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.cumsum(data, axis=0)
W
wopeizl 已提交
539
"""
Y
yuyang18 已提交
540 541 542 543 544 545 546

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
547 548 549
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')

550
    locals_var = locals().copy()
Y
yuyang18 已提交
551
    kwargs = dict()
552
    for name, val in locals_var.items():
Y
yuyang18 已提交
553 554 555
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
556
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
557 558


559
thresholded_relu.__doc__ = """
560 561 562
	:alias_main: paddle.nn.functional.thresholded_relu
	:alias: paddle.nn.functional.thresholded_relu,paddle.nn.functional.activation.thresholded_relu
	:old_api: paddle.fluid.layers.thresholded_relu
S
swtkiwi 已提交
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
:strong:`Thresholded ReLU Activation Operator`

Equation:
    ..  math::
        out = \\begin{cases}
            x, &if x > threshold \\\\
            0, &otherwise
            \\end{cases}

Args:
    x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
        
    threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.

Returns:

    Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Y
yuyang18 已提交
582
Examples:
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.thresholded_relu(x, threshold=0.1)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.thresholded_relu(x, threshold=0.1)
            y_np = y.numpy()
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
629
"""
F
Feiyu Chan 已提交
630 631 632 633 634 635

__all__ += ['gelu']

_gelu_ = generate_layer_fn('gelu')


636
def gelu(x, approximate=False):
F
Feiyu Chan 已提交
637 638 639 640 641 642 643 644 645
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _gelu_(**kwargs)


gelu.__doc__ = """
646 647 648
	:alias_main: paddle.nn.functional.gelu
	:alias: paddle.nn.functional.gelu,paddle.nn.functional.activation.gelu
	:old_api: paddle.fluid.layers.gelu
S
swtkiwi 已提交
649

F
Feiyu Chan 已提交
650 651 652 653
:strong:`GeLU Activation Operator`
For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).

Equation:
654 655 656 657 658
    if approximate is True
    ..  math::
        out = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else
F
Feiyu Chan 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    ..  math::
        out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

Args:

    x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.gelu(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.gelu(x)
            y_np = y.numpy()
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #        [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
"""
F
Feiyu Chan 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

__all__ += ['erf']

_erf_ = generate_layer_fn('erf')


def erf(x):
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _erf_(**kwargs)


erf.__doc__ = """
734 735 736
	:alias_main: paddle.erf
	:alias: paddle.erf,paddle.tensor.erf,paddle.tensor.math.erf,paddle.nn.functional.erf,paddle.nn.functional.activation.erf
	:old_api: paddle.fluid.layers.erf
S
swtkiwi 已提交
737

F
Feiyu Chan 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
:strong:`Erf Operator`
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).

Equation:
    ..  math::
        out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta

Args:

    x(Variable): The input of Erf op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of Erf op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.erf(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.erf(x)
            y_np = y.numpy()
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)
"""