trainer.py 44.3 KB
Newer Older
Y
yuyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

S
sneaxiy 已提交
17
from .wrapped_decorator import contextmanager
Y
yuyang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
import os
import errno
import shutil
import six
import time

from .. import core
from .. import data_feeder
from .. import executor
from .. import framework
from .. import io
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
from .. import optimizer as opt_module
W
wopeizl 已提交
31
from .. import parallel_executor
Y
yuyang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
from ..transpiler import distribute_transpiler

__all__ = [
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
]


class BeginEpochEvent(object):
    """
    The begin of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
    """
    The end of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

    def __init__(self, epoch_id):
        self.epoch = epoch_id


class BeginStepEvent(object):
    """
    The begin of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
    """

    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
        self.fetch_metrics = True
        """
        If fetch_metrics is true, the metrics will be fetched at the
        EndStepEvent. Default is True.
        """


class EndStepEvent(object):
    """
    The end of a training step.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
        metrics(list): A list of fetched tensor. The order of this list is same
            as the :code:`train_func` returns.
    """

    def __init__(self, epoch_id, step_id, metrics):
        self.epoch = epoch_id
        self.step = step_id
        self.metrics = metrics


class CheckpointConfig(object):
    """
    Parameter object for :code:`save_checkpoint` and
    :code:`fluid.Trainer`. Used to configuration how to save checkpoint.

    Args:
        checkpoint_dir(str): Directory path to save check point. Default is the
            current directory.

        max_num_checkpoints(int): The max number of local check points.
        epoch_interval(int): Every number of epoch to save check point.
        step_interval(int): Every number of step to save check point.

    Examples:
        >>> config = fluid.CheckpointConfig("./checkpoints")
        >>> trainer = fluid.Trainer(train_func=train_program,
        >>>                         place=place,
        >>>                         optimizer_func=optimizer_func,
        >>>                         checkpoint_config=config)
        >>> trainer.train(...)
    """

    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
                 epoch_interval=1,
                 step_interval=10):

        assert epoch_interval >= 1
        assert step_interval >= 1

        self.checkpoint_dir = checkpoint_dir \
            if checkpoint_dir is not None else os.getcwd()
        self.max_num_checkpoints = max_num_checkpoints
        self.epoch_interval = epoch_interval
        self.step_interval = step_interval
        self.epoch_id = 0
        self.step_id = 0
        self.load_serial = None
        self.pserver_id = None
        self.lookup_table_name = None


def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


class Trainer(object):
    """
    A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
    simple neural network easily.

    This API takes a :code:`train_func`. A :code:`train_func` is a function that
    return loss as it first return value. The reset value can be fetched by
    EndStepEvent.metrics

    This API also takes a :code:`optimizer_func` that will return an optimizer
    instance.

    For example, to train a MLP for MNIST dataset, the sample program is

    >>> import paddle.fluid as fluid
    >>>
    >>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
    >>>     hidden = image
    >>>     for layer_size in layer_sizes:
    >>>         hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
    >>>     return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
    >>>
    >>> def train_mnist_mlp():
    >>>     img = fluid.layers.data(name='image', shape=[784])
    >>>     label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    >>>     prediction = mlp(img)
    >>>     return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
    >>>
    >>> def optimizer():
    >>>     return fluid.optimizer.Adam()
    >>>
    >>> trainer = Trainer(train_func=train_mnist_mlp,
    >>>                   optimizer_func=optimizer,
    >>>                   place=fluid.CUDAPlace(0),
    >>>                   parallel=True)
    >>>
    >>> def train_callback(event):
    >>>     if isinstance(event, fluid.EndStepEvent):
    >>>         print "Epoch ID", event.epoch, "Step ID",\
    >>>             event.step, "AvgLoss", event.metrics[0]
    >>>     elif isinstance(event, fluid.EndEpochEvent):
    >>>         trainer.save_params("./model_{0}".format(event.epoch))
    >>>
    >>> trainer.train(num_epochs=100, event_handler=train_callback)

    For more example, please see :ref:`api_guide_high_level_api`.


    Args:
        train_func(callable): A function which will return loss. The loss must be
            a scalar tensor.
        optimizer_func(callable): A function that returns an Optimizer object.
        place(CUDAPlace|CPUPlace): The device place of this trainer. If
            :code:`parallel=True,` all CUDA Places will be used if :code:`place`
            is a :code:`CUDAPlace`.
        parallel(bool): True if use multiple devices.
        checkpoint_config(CheckpointConfig): Configuration about how to save
            checkpoints.
    """

    def __init__(self,
                 train_func,
                 optimizer_func,
                 param_path=None,
                 place=None,
                 parallel=False,
                 checkpoint_config=None):
        self.__stop = False
        self.parallel = parallel

        # config for checkpoint
        # only chief worker will save variables
        self.trainer_id = 0
        self.checkpoint_cfg = checkpoint_config
        if self.checkpoint_cfg:
            assert isinstance(self.checkpoint_cfg, CheckpointConfig)
            serial = _get_latest_checkpoint_serial(
                self.checkpoint_cfg.checkpoint_dir)
            self.checkpoint_cfg.load_serial = serial if serial >= 0 else None

        self.scope = core.Scope()

        # 1. we need to generate a framework.Program by calling
        # program_func. Reference: fluid.program_guard in
        # test_word2vec.py

        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
            program_func_outs = train_func()
            self.train_func_outputs = program_func_outs if isinstance(
                program_func_outs, list) else [program_func_outs]
            self.test_program = self.train_program.clone(for_test=True)

            # The first element of program_func_outs is loss.
            loss = self.train_func_outputs[0]

            optimizer = optimizer_func()
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
            optimize_ops, params_grads = optimizer.minimize(loss)

        self.place = check_and_get_place(place)

        self._dist_transpile_if_necessary(optimize_ops, params_grads)

        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
        # Run startup program
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)

        if self.checkpoint_cfg and self.checkpoint_cfg.load_serial is not None:
            self._load_checkpoint()

        if param_path and os.path.isdir(param_path):
            with self._prog_and_scope_guard():
                # load params from param_path into scope
                io.load_persistables(
                    executor=exe,
                    dirname=param_path,
                    main_program=self.startup_program)

    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
            current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))

        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
                self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if training_role == "PSERVER":
                if self.checkpoint_cfg:
                    pserver_id = eplist.index(current_endpoint)
                    self.checkpoint_cfg.pserver_id = pserver_id
                    if t.has_distributed_lookup_table:
                        self.checkpoint_cfg.lookup_table_name = t.table_name

                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )

    def stop(self):
        """
        stop training
        """
        self.__stop = True

    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
        """
        Start the train loop to train the model.

        Args:
            num_epochs(int): The number of epoch. An epoch will process all data in reader
            event_handler(callable): The event handler. A function with type (ev:Event)->void
            reader(callable): A reader creator object. See also
                :ref:`api_guide_python_reader` .
            feed_order(list): Feeding order of reader. None will following the defining
                order in program

        Returns:
            None
        """
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)

    def test(self, reader, feed_order):
        """
        Test the model on given test data

        Args:
            reader(callable): The reader that yields test data.
            feed_order(list): Feeding order of reader. None will following the
                defining order in program
        """

        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)

    def save_params(self, param_path):
        """
        Save all parameters into :code:`param_path`.

        Args:
            param_path(str): The path to save parameters.

        Returns:
            None
        """
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)

    def save_inference_model(self, param_path, feeded_var_names,
                             target_var_indexes):
        """
        Save model for cpp inference into :code:`param_path`.

        Args:
            param_path(str): The path to save parameters.
            feeded_var_names(list(str)): The name of the vars that you
                need to feed in before run program.
            target_var_indexes(list(int)): the index of target var that
                you need to return in trainer.train_func.
        Returns:
            None
        """
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            target_vars = [
                self.train_func_outputs[index] for index in target_var_indexes
            ]
            io.save_inference_model(param_path, feeded_var_names, target_vars,
                                    exe)

S
sneaxiy 已提交
456
    @contextmanager
Y
yuyang 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
        if self.checkpoint_cfg:
            epochs = [
                epoch_id for epoch_id in range(num_epochs)
                if epoch_id >= self.checkpoint_cfg.epoch_id
            ]
        else:
            epochs = [epoch_id for epoch_id in range(num_epochs)]

        for epoch_id in epochs:
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
                if self.__stop:
                    if self.checkpoint_cfg:
                        self._clean_checkpoint()
                    return

                if self.checkpoint_cfg and self.checkpoint_cfg.load_serial \
                        and self.checkpoint_cfg.step_id >= step_id and self.checkpoint_cfg.epoch_id == epoch_id:
                    continue

                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])

                if self.checkpoint_cfg:
                    self._save_checkpoint(epoch_id, step_id)
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
            event_handler(EndEpochEvent(epoch_id))
        if self.checkpoint_cfg:
            self._clean_checkpoint()

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

    def _clean_checkpoint(self):
        assert self.checkpoint_cfg
        clean_checkpoint(checkpoint_dir=self.checkpoint_cfg.checkpoint_dir)

    def _get_checkpoint_load_args(self):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
        """
        return ["epoch_id", "step_id"]

    def _get_checkpoint_save_args(self, epoch_id, step_id):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
        """
        trainer_args = {}
        trainer_args["epoch_id"] = epoch_id
        trainer_args["step_id"] = step_id
        return trainer_args

    def _save_checkpoint(self, epoch_id, step_id):
        assert self.checkpoint_cfg

        if epoch_id % self.checkpoint_cfg.epoch_interval == 0 \
                and step_id % self.checkpoint_cfg.step_interval == 0:
            exe = executor.Executor(self.place)
            save_checkpoint(
                executor=exe,
                checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
                trainer_id=self.trainer_id,
                trainer_args=self._get_checkpoint_save_args(epoch_id, step_id),
                main_program=self.train_program,
                max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints)

    def _load_checkpoint(self):
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            load_checkpoint(
                executor=exe,
                checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
                main_program=self.startup_program)

            if not self.checkpoint_cfg.pserver_id:
                load_trainer_args = self._get_checkpoint_load_args()
                trainer_args = load_checkpoint(
                    executor=exe,
                    checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
                    main_program=self.startup_program,
                    role_id=self.trainer_id,
                    is_trainer=True,
                    load_trainer_args=load_trainer_args)

                if len(trainer_args) != 2:
                    raise ValueError(
                        "the return trainer_args length do not equal _get_checkpoint_load_args"
                    )
                self.checkpoint_cfg.epoch_id = int(trainer_args[0])
                self.checkpoint_cfg.step_id = int(trainer_args[1])
            else:
                if self.checkpoint_cfg.lookup_table_name:
                    load_checkpoint(
                        executor=exe,
                        checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
                        main_program=self.startup_program,
                        role_id=self.checkpoint_cfg.pserver_id,
                        is_trainer=False,
                        load_trainer_args=None,
                        load_lookup_table=self.checkpoint_cfg.lookup_table_name)


def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

    if isinstance(feed_order, list):
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == list(range(len(feed_order))):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(
            six.iteritems(feed_order), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list


# move Checkpoint APIs from io.py to trainer.py, make all of them are private.
SUCCESS_MARK_FILENAME = "_SUCCESS"
CHECKPOINT_PREFIX = "checkpoint"
MODEL_DIR = "__model__"
LOOKUP_TABLE_DIR = "__lookup_table__"
TRAINER_PREFIX = "trainer"
CHECKPOINT_SEPARATOR = "_"


def save_checkpoint(executor,
                    checkpoint_dir,
                    trainer_id,
                    main_program,
                    trainer_args=None,
                    max_num_checkpoints=3,
                    lookup_table=None,
                    pserver_endpoints=None):
    """
    This function filters out all checkpoint variables from the give
    main_program and then saves these variables to the `checkpoint_dir`
    directory.

    In the training precess, we generally save a checkpoint in each
    iteration. So there might be a lot of checkpoints in the
    `checkpoint_dir`. To avoid them taking too much disk space, the
    `max_num_checkpoints` are introduced to limit the total number of
    checkpoints. If the number of existing checkpints is greater than
    the `max_num_checkpoints`, oldest ones will be scroll deleted.

    A variable is a checkpoint variable and will be saved if it meets
    all following conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for save checkpoint.
        checkpoint_dir(str): The folder where to save checkpoints.
        trainer_id(int): currect trainer id, if id is equal to 0, the trainer
            is chief.
        trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
            and 'step_id'.
            Defaut: None
        main_program(Program): The program whose checkpoint variables will
            be saved.
        max_num_checkpoints(int): The max number of total number of existing
            checkpoints.
            Default: 3
        lookup_table(string|None): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name
        pserver_endpoints(list|None): the parameter server ip:port list.
            when use distribute lookup table, we can get pserver_endpoints by
            distribute arguments.

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        AssertionError: If `trainer_args` is not a dict.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            trainer_args = {"epoch_id": 200,
                            "step_id": 20} # just an example
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            save_checkpoint(executor=exe,
                                     checkpoint_dir=path,
                                     trainer_id=0,
                                     trainer_args=trainer_args,
                                     main_program=prog,
                                     max_num_checkpoints=3,
                                     lookup_table=table_name,
                                     pserver_endpoints = ps_endpoints)
    """
    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")

    if main_program is None:
        raise ValueError('main_program should not be None.')

    if trainer_args:
        assert isinstance(trainer_args, dict)

    is_chief = trainer_id == 0

    _make_chekcpoint_dirs(checkpoint_dir)
    serial = _get_latest_checkpoint_serial(checkpoint_dir) + 1
    cur_dir = _get_serial_dir(checkpoint_dir, serial)

    _save_trainer_args(cur_dir, trainer_id, trainer_args)

    if is_chief:
        _save_persist_vars_without_grad(executor, cur_dir, main_program)

    if is_chief and lookup_table and pserver_endpoints:
        _save_pserver_vars_by_notify(executor, cur_dir, lookup_table,
                                     pserver_endpoints)

    _scroll_delete(checkpoint_dir, max_num_checkpoints)


def load_checkpoint(executor,
                    checkpoint_dir,
                    main_program,
                    role_id=0,
                    is_trainer=True,
                    load_trainer_args=None,
                    load_lookup_table=None):
    """
    This function filters out all checkpoint variables from the give
    main_program and then try to load these variables from the
    `checkpoint_dir` directory.

    In the training precess, we generally save a checkpoint in each
    iteration. So there are more than one checkpoint in the
    `checkpoint_dir` (each checkpoint has its own sub folder), use
    `serial` to specify which serial of checkpoint you would like to
    load.

    A variable is a checkpoint variable and will be loaded if it meets
    all following conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading checkpoint.
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        main_program(Program): The program whose checkpoint variables will
                               be loaded.
        role_id(int):  the trainer id or the parameter server id.
        is_trainer(bool): trainer is True and parameter server is False.
        load_trainer_args(list|None): list about load trainer args.
        load_lookup_table(str|None): the lookup table name

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        ValueError: If `main_program` is None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            load_checkpoint(executor=exe, checkpoint_dir=path,
                    serial=9, main_program=prog)

            # In this example, `load_checkpoint` function
            # will first filters out all checkpoint variables in the default
            # main program, and then try to load these variables form the
            # folder "./checkpoints/checkpoint_9/__model__".
    """

    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")

    serial = _get_latest_checkpoint_serial(checkpoint_dir)

    # there are nothing  need to be loaded
    if serial is None or serial < 0:
        return

    if main_program is None:
        raise ValueError('main_program should not be None.')

    if is_trainer and load_trainer_args is None:
        cur_dir = _get_serial_dir(checkpoint_dir, serial)
        _load_persist_vars_without_grad(executor, cur_dir, main_program, True)
        return

    if is_trainer and load_trainer_args:
        return _load_trainer_args(checkpoint_dir, serial, role_id,
                                  load_trainer_args)

    if not is_trainer and load_lookup_table:
        _load_lookup_table_vars(executor, checkpoint_dir, main_program, role_id,
                                load_lookup_table)


def clean_checkpoint(checkpoint_dir, delete_dir=False):
    """
    clean the checkpoint dir, when the train exits normally,
    the trainer will call clean_checkpoint to delete checkpoint directory saved before.
    delete_dir only works when the directory is empty, otherwise, OSError is raised.

    : param checkpoint_dir
    : param delete_dir
    """

    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")
    _scroll_delete(checkpoint_dir, max_num_checkpoints=0)

    if delete_dir and not os.listdir(checkpoint_dir):
        os.rmdir(checkpoint_dir)


def _load_persist_vars_without_grad(executor,
                                    dirname,
                                    program,
                                    has_model_dir=False):
    """
    This function filters out all checkpoint variables from the give
    program and then trys to load these variables from the given directory.

    A variable is a checkpoint variable if it meets all following
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be loaded.
        has_model_dir(bool): if True, the function loads variables
                             from a sub directory named '__model__'.
                             Default: False

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            _load_persist_vars_without_grad(executor=exe,
                    dirname=param_path, program=prog, has_model_dir=True)

            # In this example, `_load_persist_vars_without_grad` function
            # will first filters out all checkpoint variables in the default
            # main program, and then trys to load these variables form the
            # folder "./my_paddle_model/__model__".
    """

    if has_model_dir:
        dirname = _get_model_dir(dirname)

    io.load_vars(
        executor,
        dirname=dirname,
        main_program=program,
        predicate=_is_checkpoint_var,
        filename=None)


def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
    """
    The parameter server will load lookup table's local file in
    selectedrows variable.

    Args:
        executor(Executor): The executor to run for loading persistable variables
        dirname(str): The directory path
        main_program(Program): Find the variable named table_name in main_program
        pserver_id(int): the serial number in pserver_endpoints list
        table_name(str): lookup table name

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            dirname = "./checkpoints/checkpoint_9/"
            prog = fluid.default_main_program()
            pserver_id = 1
            table_name = "share_w"
            _load_lookup_table_vars(executor=exe,
                    dirname=dirname, program=prog, pserver_id=pserver_id,
                    table_name=table_name)
    """

    for var in program.list_vars():
        if var.name == table_name:
            lookup_table_var = var
            break

    assert lookup_table_var is not None

    lookup_table_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
    table_file = table_name + CHECKPOINT_SEPARATOR + str(pserver_id)

    load_prog = framework.Program()
    load_block = load_prog.global_block()

    load_block.append_op(
        type='load',
        inputs={},
        outputs={'Out': [lookup_table_var]},
        attrs={'file_path': os.path.join(lookup_table_dir, table_file)})

    executor.run(load_prog)


def _save_persist_vars_without_grad(executor, dirname, program):
    """
    This function filters out all checkpoint variables from the give
    program and then save these variables to a sub-folder '__model__' of
    the given directory.

    A variable is a checkpoint variable if it meets all following
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be saved.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            _save_persist_vars_without_grad(executor=exe,
                    dirname=param_path, program=prog)

            # In this example, `_save_persist_vars_without_grad` function
            # will first filters out all checkpoint variables in the default
            # main program, and then saves these variables to the folder
            # "./my_paddle_model/__model__".
    """
    cur_dir = _get_model_dir(dirname)
    io.save_vars(
        executor,
        dirname=cur_dir,
        main_program=program,
        vars=None,
        predicate=_is_checkpoint_var,
        filename=None)
    _write_success(cur_dir)


def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
                                 ps_endpoint_list):
    """
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
    The checkpoint notify message contains lookup table name,
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save checkpoints.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name
        ps_endpoint_list(list): the parameter server ip:port list.
            when use distribute lookup table, we can get ps_endpoint_list by
            distribute arguments.
    Return:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            _save_pserver_vars_by_notify(executor=exe,
                    dirname=param_path, lookup_table=table_name,
                    ps_endpoint_list=ps_endpoints)
    """
    cur_dir = _get_lookuptable_dir(dirname)

    checkpoint_notify_program = framework.Program()
    checkpoint_notify_block = checkpoint_notify_program.global_block()

    attrs = {}
    attrs['epmap'] = ps_endpoint_list
    attrs['dir'] = cur_dir
    attrs['lookup_table'] = lookup_table

    checkpoint_notify_block.append_op(
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
    executor.run(checkpoint_notify_program)


def _save_trainer_args(dirname, trainer_id, trainer_args):
    assert isinstance(trainer_args, dict)

    cur_dir = _get_trainer_dir(dirname, trainer_id)

    for name, value in six.iteritems(trainer_args):
        args_file = os.path.join(cur_dir, name)
        with open(args_file, 'w') as f:
            f.write(str(value))
    _write_success(cur_dir)


def _load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args):
    """
    trainer will load some args from it's independent directory,
    such as epoch_id and step_id.

    Args:
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        trainer_id(int): current trainer id.
        trainer_args(list): list about load trainer args
    Return:
        None

    Examples:
        .. code-block:: python

            param_path = "./checkpoint/"
            serial = 7
            trainer_id = 2
            trainer_args = ["epoch_id", "step_id"]

            _load_trainer_args(checkpoint_dir=param_path, serial=serial,
            trainer_id=trainer_id, trainer_args=trainer_args)
    """
    assert isinstance(trainer_args, list)

    cur_dir = _get_serial_dir(checkpoint_dir, serial)
    cur_dir = _get_trainer_dir(cur_dir, trainer_id)

    ret_values = []

    for arg in trainer_args:
        cur_file = os.path.join(cur_dir, arg)
        with open(cur_file, 'r') as f:
            contents = f.read()
            ret_values.append(contents.strip())
    return ret_values


def _is_checkpoint_var(var):
    """
    the checkpoint will not save or load all the variables.
    var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.

    : param var(Variable)
    """
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.RAW:
        return False
    # @GRAD are named for gradient variables, checkpoint will not save it.
    if "@GRAD" in var.name:
        return False
    # .trainer_ are named for distribute train variables, checkpoint will not save it.
    if ".trainer_" in var.name:
        return False

    # .block is named for distribute train variables, checkpoint will not save it.
    if ".block" in var.name:
        return False

    return var.persistable


def _make_chekcpoint_dirs(dirs):
    """
    _make_chekcpoint_dirs will makdir local directory directly, when the directory is exist, it will igore it.
    """
    assert dirs is not None

    if os.path.isfile(dirs):
        raise OSError(errno.ENOTDIR, "dirs path shoule be a Directory.", dirs)

    if not os.path.isdir(dirs):
        try:
            os.makedirs(dirs)
        except OSError as err:
            if err.errno != errno.EEXIST:
                raise err


def _get_dir_serial(dirname):
    _, serial = dirname.split(CHECKPOINT_SEPARATOR)

    try:
        serial_num = int(serial)
    except ValueError:
        serial_num = -1
    return serial_num


def _get_serial_dir(dirname, serial):
    serial_folder = CHECKPOINT_PREFIX + CHECKPOINT_SEPARATOR + str(serial)
    serial_dir = os.path.join(dirname, serial_folder)
    _make_chekcpoint_dirs(serial_dir)

    return serial_dir


def _get_model_dir(dirname):
    model_dir = os.path.join(dirname, MODEL_DIR)
    _make_chekcpoint_dirs(model_dir)
    return model_dir


def _get_lookuptable_dir(dirname):
    lookuptable_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
    _make_chekcpoint_dirs(lookuptable_dir)
    return lookuptable_dir


def _get_trainer_dir(dirname, trainer_id):
    trainer_folder = TRAINER_PREFIX + CHECKPOINT_SEPARATOR + str(trainer_id)
    trainer_dir = os.path.join(dirname, trainer_folder)
    _make_chekcpoint_dirs(trainer_dir)
    return trainer_dir


def _scroll_delete(dirname, max_num_checkpoints=3):
    dirs = os.listdir(dirname)
    serial_map = {}
    for serial in dirs:
        serial_num = _get_dir_serial(serial)
        serial_map[serial_num] = serial

    if len(list(serial_map.keys())) <= max_num_checkpoints:
        return

    serials = list(serial_map.keys())
    serials.sort(reverse=True)
    serials = serials[max_num_checkpoints:]
    for serial in serials:
        cur_dir = _get_serial_dir(dirname, serial)
        try:
            shutil.rmtree(cur_dir)
        except OSError as err:
            if err.errno != errno.ENOENT:
                raise err


def _write_success(dirname):
    """
    write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.

    : param dirname
    """
    success_file = os.path.join(dirname, SUCCESS_MARK_FILENAME)
    with open(success_file, 'a') as f:
        now = time.ctime()
        f.write(now)


def _get_latest_checkpoint_serial(checkpoint_dir):
    """
    get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory

    : param checkpoint_dir
    """
    if not checkpoint_dir:
        return -1

    def has_success(checkpoint_dir, cur_dir):
        """
        is _SUCCESS in this dir
        """

        serial = _get_dir_serial(cur_dir)
        if serial == -1 or not os.path.isdir(
                os.path.join(checkpoint_dir, cur_dir)):
            return -1

        success_path = os.path.join(
            _get_serial_dir(checkpoint_dir, serial), MODEL_DIR,
            SUCCESS_MARK_FILENAME)
        if os.path.isfile(success_path):
            return serial

    if not os.path.isdir(checkpoint_dir):
        return -1

    current_dir = -1
    dirs = os.listdir(checkpoint_dir)
    for cur_dir in dirs:
        success_num = has_success(checkpoint_dir, cur_dir)
        if success_num > current_dir:
            current_dir = success_num
    return current_dir