mq2007.py 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MQ2007 dataset

MQ2007 is a query set from Million Query track of TREC 2007. There are about 1700 queries in it with labeled documents. In MQ2007, the 5-fold cross
validation strategy is adopted and the 5-fold partitions are included in the package. In each fold, there are three subsets for learning: training set,
validation set and testing set.

MQ2007 dataset from website
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar and parse training set and test set into paddle reader creators

"""

import os
import functools
import rarfile
from common import download
import numpy as np

# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
URL = "http://www.bigdatalab.ac.cn/benchmark/upload/download_source/7b6dbbe2-842c-11e4-a536-bcaec51b9163_MQ2007.rar"
MD5 = "7be1640ae95c6408dab0ae7207bdc706"


def __initialize_meta_info__():
    """
  download and extract the MQ2007 dataset
  """
    fn = fetch()
    rar = rarfile.RarFile(fn)
    dirpath = os.path.dirname(fn)
    rar.extractall(path=dirpath)
    return dirpath


class Query(object):
    """
  queries used for learning to rank algorithms. It is created from relevance scores,  query-document feature vectors

  Parameters:
  ----------
  query_id : int
    query_id in dataset, mapping from query to relevance documents
  relevance_score : int 
    relevance score of query and document pair
  feature_vector : array, dense feature
    feature in vector format
  description : string
    comment section in query doc pair data
  """

    def __init__(self,
                 query_id=-1,
                 relevance_score=-1,
                 feature_vector=None,
                 description=""):
        self.query_id = query_id
        self.relevance_score = relevance_score
        if feature_vector is None:
            self.feature_vector = []
        else:
            self.feature_vector = feature_vector
        self.description = description

    def __str__(self):
        string = "%s %s %s" % (str(self.relevance_score), str(self.query_id),
                               " ".join(str(f) for f in self.feature_vector))
        return string

    # @classmethod
    def _parse_(self, text):
        """
    parse line into Query
    """
        comment_position = text.find('#')
        line = text[:comment_position].strip()
        self.description = text[comment_position + 1:].strip()
        parts = line.split()
        if len(parts) != 48:
            sys.stdout.write("expect 48 space split parts, get %d" %
                             (len(parts)))
            return None
        # format : 0 qid:10 1:0.000272 2:0.000000 .... 
        self.relevance_score = int(parts[0])
        self.query_id = int(parts[1].split(':')[1])
        for p in parts[2:]:
            pair = p.split(':')
            self.feature_vector.append(float(pair[1]))
        return self


class QueryList(object):
    """
  group query into list, every item in list is a Query
  """

    def __init__(self, querylist=None):
        self.query_id = -1
        if querylist is None:
            self.querylist = []
        else:
            self.querylist = querylist
            for query in self.querylist:
                if self.query_id == -1:
                    self.query_id = query.query_id
                else:
                    if self.query_id != query.query_id:
                        raise ValueError("query in list must be same query_id")

    def __iter__(self):
        for query in self.querylist:
            yield query

    def __len__(self):
        return len(self.querylist)

    def __getitem__(self, i):
        return self.querylist[i]

    def _correct_ranking_(self):
        if self.querylist is None:
            return
        self.querylist.sort(key=lambda x: x.relevance_score, reverse=True)

    def _add_query(self, query):
        if self.query_id == -1:
            self.query_id = query.query_id
        else:
            if self.query_id != query.query_id:
                raise ValueError("query in list must be same query_id")
        self.querylist.append(query)


def gen_plain_txt(querylist):
    """
  gen plain text in list for other usage
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  query_id : np.array, shape=(samples_num, )
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
    """
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    for query in querylist:
        yield querylist.query_id, query.relevance_score, np.array(
            query.feature_vector)


def gen_point(querylist):
    """
  gen item in list for point-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
  """
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    for query in querylist:
        yield query.relevance_score, np.array(query.feature_vector)


def gen_pair(querylist, partial_order="full"):
    """
  gen pair for pair-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList
  pairtial_order : "full" or "neighbour"
    there is redudant in all possiable pair combinations, which can be simplifed
  gen pairs for neighbour items or the full partial order pairs

  return :
  ------
  label : np.array, shape=(1)
  query_left : np.array, shape=(1, feature_dimension)
  query_right : same as left
  """
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    labels = []
    docpairs = []

    # C(n,2)
    for i in range(len(querylist)):
        query_left = querylist[i]
        for j in range(i + 1, len(querylist)):
            query_right = querylist[j]
            if query_left.relevance_score > query_right.relevance_score:
                labels.append([1])
                docpairs.append([
                    np.array(query_left.feature_vector),
                    np.array(query_right.feature_vector)
                ])
            elif query_left.relevance_score < query_right.relevance_score:
                labels.append([1])
                docpairs.append([
                    np.array(query_right.feature_vector),
                    np.array(query_left.feature_vector)
                ])
    for label, pair in zip(labels, docpairs):
        yield np.array(label), pair[0], pair[1]


def gen_list(querylist):
    """
  gen item in list for list-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
  """
    if not isinstance(querylist, QueryList):
        querylist = QueryList(querylist)
    querylist._correct_ranking_()
    relevance_score_list = [[query.relevance_score] for query in querylist]
    feature_vector_list = [query.feature_vector for query in querylist]
    yield np.array(relevance_score_list), np.array(feature_vector_list)


def query_filter(querylists):
    """
    filter query get only document with label 0.
    label 0, 1, 2 means the relevance score document with query
    parameters :
      querylist : QueyList list

    return :
      querylist : QueyList list
    """
    filter_query = []
    for querylist in querylists:
        relevance_score_list = [query.relevance_score for query in querylist]
        if sum(relevance_score_list) != .0:
            filter_query.append(querylist)
    return filter_query


def load_from_text(filepath, shuffle=False, fill_missing=-1):
    """
  parse data file into querys
  """
    prev_query_id = -1
    querylists = []
    querylist = None
    fn = __initialize_meta_info__()
    with open(os.path.join(fn, filepath)) as f:
        for line in f:
            query = Query()
            query = query._parse_(line)
            if query == None:
                continue
            if query.query_id != prev_query_id:
                if querylist is not None:
                    querylists.append(querylist)
                querylist = QueryList()
                prev_query_id = query.query_id
            querylist._add_query(query)
    if querylist is not None:
        querylists.append(querylist)
    return querylists


def __reader__(filepath, format="pairwise", shuffle=False, fill_missing=-1):
    """
  Parameters
  --------
  filename : string
  fill_missing : fill the missing value. default in MQ2007 is -1
  
  Returns
  ------
  yield
    label query_left, query_right  # format = "pairwise"
    label querylist # format = "listwise"
  """
    querylists = query_filter(
        load_from_text(
            filepath, shuffle=shuffle, fill_missing=fill_missing))
    for querylist in querylists:
        if format == "plain_txt":
            yield next(gen_plain_txt(querylist))
        elif format == "pointwise":
            yield next(gen_point(querylist))
        elif format == "pairwise":
            for pair in gen_pair(querylist):
                yield pair
        elif format == "listwise":
            yield next(gen_list(querylist))


train = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/train.txt")
test = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/test.txt")


def fetch():
    return download(URL, "MQ2007", MD5)


if __name__ == "__main__":
    fetch()
    mytest = functools.partial(
        __reader__, filepath="MQ2007/MQ2007/Fold1/sample", format="listwise")
    for label, query in mytest():
        print label, query