test_one_hot_op.py 3.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang yaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import math
from op_test import OpTest
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.framework import Program, program_guard


class TestOneHotOp(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
        x_lod = [[0, 4, 5, 8, 11]]
        x = [np.random.randint(0, depth - 1) for i in xrange(x_lod[0][-1])]
        x = np.array(x).astype('int').reshape([x_lod[0][-1], 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        for i in xrange(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
41
        self.attrs = {'depth': depth, 'dtype': int(core.VarDesc.VarType.FP32)}
Y
Yang yaming 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_default_dtype(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
        x_lod = [[0, 4, 5, 8, 11]]
        x = [np.random.randint(0, depth - 1) for i in xrange(x_lod[0][-1])]
        x = np.array(x).astype('int').reshape([x_lod[0][-1], 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        for i in xrange(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_exception(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        self.depth = 10
        self.place = core.CPUPlace()
        self.dimension = 12
        self.x = core.LoDTensor()
        x_lod = [[0, 4, 5, 8, 11]]
        data = [np.random.randint(11, 20) for i in xrange(x_lod[0][-1])]
        data = np.array(data).astype('int').reshape([x_lod[0][-1], 1])
        self.x.set(data, self.place)
        self.x.set_lod(x_lod)

    def test_check_output(self):
        program = Program()
        with program_guard(program):
            x = fluid.layers.data(
                name='x', shape=[self.dimension], dtype='float32', lod_level=1)
            block = program.current_block()
            one_hot_out = block.create_var(
                name="one_hot_out",
                type=core.VarDesc.VarType.LOD_TENSOR,
                dtype='float32')
            block.append_op(
                type='one_hot',
                inputs={'X': x},
                attrs={'depth': self.depth},
                outputs={'Out': one_hot_out})
            exe = fluid.Executor(self.place)

            def run():
                exe.run(feed={'x': self.x},
                        fetch_list=[one_hot_out],
                        return_numpy=False)

            self.assertRaises(core.EnforceNotMet, run)


if __name__ == '__main__':
    unittest.main()