while_op.cc 14.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang(Tony) 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14 15

#include <vector>
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/framework/var_type.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yang Yang(Tony) 已提交
22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

Y
Yang Yu 已提交
29 30 31 32 33 34
static constexpr char kStepBlock[] = "sub_block";
static constexpr char kCondition[] = "Condition";
static constexpr char kStepScopes[] = "StepScopes";
static constexpr char kX[] = "X";
static constexpr char kXGRAD[] = "X@GRAD";
static constexpr char kOutputs[] = "Out";
Y
Yang Yang(Tony) 已提交
35 36 37 38 39 40 41 42

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

43 44 45
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
46 47 48 49
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

D
dzhwinter 已提交
50
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
51
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
52

Y
Yang Yang(Tony) 已提交
53 54 55 56 57
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yu 已提交
58 59
    PADDLE_ENFORCE(platform::is_cpu_place(cond.place()),
                   "Condition of while op must in CPU memory.");
X
Xin Pan 已提交
60

C
chengduo 已提交
61
    bool is_test = Attr<bool>("is_test");
X
Xin Pan 已提交
62
    auto ctx = executor.Prepare(*program, block->ID());
Y
Yang Yang(Tony) 已提交
63 64 65
    while (cond.data<bool>()[0]) {
      auto &current_scope = scope.NewScope();
      step_scopes->push_back(&current_scope);
X
Xin Pan 已提交
66
      executor.RunPreparedContext(ctx.get(), &current_scope, false);
C
chengduo 已提交
67 68 69
      if (is_test) {
        scope.DeleteScope(&current_scope);
      }
Y
Yang Yang(Tony) 已提交
70 71 72 73 74 75
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
76
  void Make() override {
Y
Yang Yu 已提交
77
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
78 79 80 81 82 83 84
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
85
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
86
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
87
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
88 89 90 91 92
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
93 94
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
C
chengduo 已提交
95
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
Y
Yang Yang(Tony) 已提交
96 97 98 99 100 101 102 103 104 105 106 107
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

108 109 110
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
C
chengduo 已提交
111 112
    PADDLE_ENFORCE(!Attr<bool>("is_test"),
                   "GradOp is only callable when is_test is false");
113 114 115
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
116
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
117
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
118
    auto *program = block->Program();
X
Xin Pan 已提交
119
    auto ctx = executor.Prepare(*program, block->ID());
Y
Yang Yang(Tony) 已提交
120 121 122 123

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
124 125 126 127 128 129
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

Y
Yang Yang(Tony) 已提交
130 131
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
Y
Yang Yang(Tony) 已提交
132 133 134 135 136 137 138
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
139 140
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
141 142 143 144 145 146
        auto &og_outside =
            detail::Ref(scope.FindVar(outside_og_name),
                        "Cannot find Outside Gradient %s", outside_og_name);
        auto &og_inside =
            detail::Ref(cur_scope.Var(inside_og_name),
                        "Cannot find inside gradient %s", inside_og_name);
S
sneaxiy 已提交
147
        if (framework::IsType<framework::LoDTensor>(og_outside.Type())) {
Y
Yang Yang(Tony) 已提交
148 149 150 151 152
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
          auto &inside_tensor =
              detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
153 154
        } else if (framework::IsType<framework::LoDTensorArray>(
                       og_outside.Type())) {
Y
Yang Yang(Tony) 已提交
155 156 157
          auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
          auto &inside_array =
              detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
158
          VLOG(8) << outside_og_name << " size = " << outside_array.size();
Y
Yang Yang(Tony) 已提交
159 160 161
          inside_array.resize(outside_array.size());

          for (size_t j = 0; j < inside_array.size(); ++j) {
162
            VLOG(8) << j << " " << outside_array[j].numel();
Y
Yang Yang(Tony) 已提交
163 164 165 166 167 168 169 170 171
            if (outside_array[j].numel() != 0) {
              inside_array[j].set_lod(outside_array[j].lod());
              inside_array[j].ShareDataWith(outside_array[j]);
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
        }
      }
X
Xin Pan 已提交
172
      executor.RunPreparedContext(ctx.get(), *cur_scope_iter, false);
Y
Yang Yang(Tony) 已提交
173

Y
Yang Yu 已提交
174 175
      auto &pg_names = Outputs(kXGRAD);
      auto &p_names = Inputs(kX);
Y
Yang Yang(Tony) 已提交
176
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yang Yang(Tony) 已提交
177 178
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        if (pg_names[param_id] == framework::kEmptyVarName) {
179
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
180 181
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
182

Y
Yang Yang(Tony) 已提交
183
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
184 185 186 187 188 189 190 191 192 193 194
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
Y
Yang Yang(Tony) 已提交
195
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
Y
Yang Yang(Tony) 已提交
196 197 198
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
F
fengjiayi 已提交
199
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
Y
Yang Yang(Tony) 已提交
200 201 202
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

203
            auto var_name = pg_names[param_id];
Y
Yang Yang(Tony) 已提交
204
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
205
                "fill_constant", framework::VariableNameMap{},
206
                {{"Out", {var_name}}}, attrs);
D
dzhwinter 已提交
207
            zero_op->Run(scope, dev_place);
208 209 210
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
211 212
          }
        }
Y
Yang Yang(Tony) 已提交
213
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
214
        auto sum_op = framework::OpRegistry::CreateOp(
Y
Yang Yang(Tony) 已提交
215
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
216 217
            {{"Out", {pg_names[param_id]}}},
            framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
218
        sum_op->Run(cur_scope, dev_place);
Y
Yang Yang(Tony) 已提交
219
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
220
      }
221 222
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
223 224 225 226 227 228 229 230 231
    }
  }
};

class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
232
  std::unique_ptr<framework::OpDesc> Apply() const override {
F
Update  
fengjiayi 已提交
233 234 235 236 237 238 239
    auto *while_grad = new framework::OpDesc();
    while_grad->SetType("while_grad");
    while_grad->SetInput(kX, Input(kX));
    while_grad->SetInput(kOutputs, Output(kOutputs));
    while_grad->SetInput(kStepScopes, Output(kStepScopes));

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
240 241
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
242 243 244

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
245 246 247 248
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
249 250
      }
    }
F
Update  
fengjiayi 已提交
251
    auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
252
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
253
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
254
        VLOG(8) << "Ignore " << each_ig;
255 256 257
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
258
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
259 260 261 262

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
F
fengjiayi 已提交
263 264 265 266 267 268 269
    block_ins.reserve(Input(kX).size() + Output(kOutputs).size());
    for (auto &p : Input(kX)) {
      block_ins.insert(p);
    }
    for (auto &o : Output(kOutputs)) {
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
270
    std::unordered_set<std::string> output_grads;
F
Update  
fengjiayi 已提交
271 272 273 274
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
275 276 277

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
278
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
279 280
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
281 282
          continue;
        }
Y
Yu Yang 已提交
283
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
284
      }
F
Update  
fengjiayi 已提交
285
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
286
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
287 288
      }
    }
Y
Yang Yang(Tony) 已提交
289

Y
Yu Yang 已提交
290 291 292 293 294
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
    std::copy(output_grads.begin(), output_grads.end(),
              output_grads_list.begin());
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
295 296

    while_grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
297
    while_grad->SetBlockAttr(kStepBlock, grad_block);
Y
Yang Yang(Tony) 已提交
298 299
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
300
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
301

F
Update  
fengjiayi 已提交
302
    return std::unique_ptr<framework::OpDesc>(while_grad);
Y
Yang Yang(Tony) 已提交
303 304 305
  }
};

Y
Yang Yang(Tony) 已提交
306 307
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
308 309
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yu 已提交
310 311
    auto p_names = op_desc.Input(kX);
    auto pg_names = op_desc.Output(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

    for (size_t i = 0; i < p_names.size(); ++i) {
      auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
      auto *g_var = block->FindVarRecursive(pg_names[i]);
      if (g_var != nullptr) {  // Gradient could be @EMPTY@
        VLOG(5) << "Setting " << pg_names[i] << " following " << p_names[i]
                << " type: " << p_var.GetType();
        g_var->SetType(p_var.GetType());
        g_var->SetDataType(p_var.GetDataType());
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
329 330
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
331 332 333
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

Y
Yang Yu 已提交
334 335 336
    auto p_names = ctx->Inputs(kX);
    auto pg_names = ctx->Outputs(kXGRAD);
    auto var_types = ctx->GetInputsVarType(kX);
Y
Yang Yang(Tony) 已提交
337 338 339 340 341 342
    std::vector<std::string> names_to_set;
    std::vector<framework::DDim> dims_to_set;
    for (size_t i = 0; i < p_names.size(); ++i) {
      if (pg_names[i] == framework::kEmptyVarName) {
        continue;
      }
Y
Yang Yu 已提交
343
      auto dims = ctx->GetInputsElementDim(kX, i);
344
      if (var_types[i] == framework::proto::VarType::LOD_TENSOR) {
Y
Yang Yang(Tony) 已提交
345
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
346
        dims_to_set.push_back(dims);
347
      } else if (var_types[i] == framework::proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yang Yang(Tony) 已提交
348 349
        // not sure how to set the dim of LOD_TENSOR_ARRAY
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
350
        dims_to_set.push_back(dims);
Y
Yang Yang(Tony) 已提交
351 352 353 354 355 356
      }
    }
    ctx->SetDims(names_to_set, dims_to_set);
  }
};

Y
Yang Yang(Tony) 已提交
357 358 359 360 361 362
}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(while, paddle::operators::WhileOp,
                  paddle::operators::WhileOpMaker,
                  paddle::operators::WhileGradOpDescMaker);
Y
Yang Yang(Tony) 已提交
363 364 365
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);