parallel_executor.h 5.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
Qiao Longfei 已提交
17
#include <memory>
X
Xin Pan 已提交
18
#include <string>
S
sneaxiy 已提交
19
#include <unordered_map>
Y
Yang Yang 已提交
20
#include <unordered_set>
Y
Yan Xu 已提交
21
#include <utility>
X
Xin Pan 已提交
22
#include <vector>
23 24

#include "paddle/fluid/framework/details/build_strategy.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/execution_strategy.h"
26
#include "paddle/fluid/framework/details/op_handle_base.h"
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yang Yang 已提交
28
#include "paddle/fluid/framework/executor.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yang Yang 已提交
30 31 32 33 34
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
35

36
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
37
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
Y
Yancey1989 已提交
38 39
#endif

Y
Yang Yang 已提交
40 41 42
namespace paddle {
namespace framework {

Y
Yu Yang 已提交
43
class ParallelExecutorPrivate;
Y
Use mtx  
Yu Yang 已提交
44

Y
yuyang18 已提交
45
using details::BuildStrategy;
Y
yuyang18 已提交
46
using details::ExecutionStrategy;
47
using details::VariableInfo;
48 49
namespace p = paddle::platform;
using DeviceType = paddle::platform::DeviceType;
Y
yuyang18 已提交
50

Y
Yang Yang 已提交
51
class ParallelExecutor {
Y
Yu Yang 已提交
52 53
  DISABLE_COPY_AND_ASSIGN(ParallelExecutor);

Y
Yu Yang 已提交
54
 public:
Y
yuyang18 已提交
55
  explicit ParallelExecutor(const std::vector<platform::Place> &places,
Y
Yan Xu 已提交
56
                            const std::vector<std::string> &bcast_vars,
57 58
                            const std::string &loss_var_name,
                            Scope *scope,
Y
yuyang18 已提交
59
                            const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
60
                            const ExecutionStrategy &exec_strategy,
X
Xin Pan 已提交
61
                            const BuildStrategy &build_strategy,
Q
Qiao Longfei 已提交
62
                            ir::Graph *graph);
Y
Yu Yang 已提交
63

64
  // NOTE(Aurelius84): Construct a PE running on single device for @to_static
65 66
  explicit ParallelExecutor(const platform::Place &place,
                            Scope *scope,
67 68 69 70
                            const ExecutionStrategy &exec_strategy,
                            const BuildStrategy &build_strategy,
                            ir::Graph *graph);

71 72
  ~ParallelExecutor();

73 74
  size_t DeviceCount() const;

Y
yuyang18 已提交
75
  std::vector<Scope *> &GetLocalScopes();
76

77 78 79 80 81
  void DropLocalExeScopes();

  // This API is used to check whether DropLocalExeScopes work.
  bool NeedCreateLocalExeScope();

Y
Yu Yang 已提交
82 83 84 85 86
  /**
   * Feed tensors to local scopes. The size of tensors should be equal to the
   * size of local scopes.
   */
  void FeedTensorsIntoLocalScopes(
Y
yuyang18 已提交
87
      const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors);
Y
Yu Yang 已提交
88 89

  void FeedAndSplitTensorIntoLocalScopes(
Y
yuyang18 已提交
90
      const std::unordered_map<std::string, LoDTensor> &tensors);
Y
Yu Yang 已提交
91

92 93
  FetchUnmergedList Run(const std::vector<std::string> &fetch_tensors);
  FetchList RunAndMerge(const std::vector<std::string> &fetch_tensors);
Y
Yang Yang 已提交
94

95 96 97 98 99
  void RunWithoutFetch(const std::vector<std::string> &skip_eager_vars);

  void ResetOpHandleScopeMapOfGraphs(
      const std::unordered_map<Scope *, Scope *> &scope_map);

100
  const ir::Graph &Graph() const;
101 102 103 104
  void PrepareVariables(Scope *scope);

  void SkipMemoryReuse(size_t scope_idx,
                       const std::vector<std::string> &skip_vars);
105

X
Xin Pan 已提交
106
 private:
Y
Yan Xu 已提交
107 108 109 110
  // broadcast the parameters from the 0th device.
  // trainer_id the trainer index in nccl distributed training.
  void BCastParamsToDevices(const std::vector<std::string> &vars,
                            int trainer_id = 0) const;
X
Xin Pan 已提交
111 112 113
  bool EnableParallelGraphExecution(const ir::Graph &graph,
                                    const ExecutionStrategy &exec_strategy,
                                    const BuildStrategy &build_strategy) const;
T
typhoonzero 已提交
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128
  void InitExecutorPrivateMemberInfo(const ExecutionStrategy &exec_strategy,
                                     const BuildStrategy &build_strategy,
                                     size_t device_count,
                                     const ir::Graph &graph);

  void CreateLocalScopes(Scope *global_scope,
                         const std::vector<Scope *> &local_scopes,
                         bool create_new);

  std::unordered_map<Scope *, Scope *> CreateLocalExecScopes(
      const std::vector<Scope *> &local_scopes, bool create_new);

  std::vector<ir::Graph *> CloneGraphToMultiDevices(ir::Graph *graph);

129 130
  void PreludeToRun(const std::vector<std::string> &fetch_tensors);

131 132 133
  void PrepareNCCLCommunicator(Scope *global_scope);

  std::vector<ir::Graph *> CompileGraphWithBuildStrategy(
134 135
      ir::Graph *graph,
      std::vector<ir::Graph *> *graphs,
136 137 138 139 140 141 142
      const std::string &loss_var_name);

  void CreateVariableInfos(std::vector<VariableInfo> *var_infos,
                           ir::Graph *graph);

  std::vector<ir::Graph *> CreateSSAGraphExecutor(
      const ExecutionStrategy &exec_strategy,
143 144
      std::vector<ir::Graph *> *async_graphs,
      ir::Graph *graph);
145 146 147 148 149 150 151 152

  void ResetOpHandleScopeMapOfGraphs(
      const std::vector<ir::Graph *> &final_graphs,
      const std::unordered_map<Scope *, Scope *> &scope_map);

  void SetReaderOpDeviceInfoOfGraphs(
      const std::vector<ir::Graph *> &final_graphs);

153 154
  void PrepareForCUDAGraphCapture(ir::Graph *graph);

S
sneaxiy 已提交
155
  ParallelExecutorPrivate *member_;
Q
Qiao Longfei 已提交
156
  std::vector<std::unique_ptr<ir::Graph>> async_graphs_;
157
  std::vector<VariableInfo> var_infos_;
158
};
Y
Yang Yang 已提交
159 160
}  // namespace framework
}  // namespace paddle