wmt16.py 13.2 KB
Newer Older
Y
ying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Y
ying 已提交
15 16
ACL2016 Multimodal Machine Translation. Please see this website for more
details: http://www.statmt.org/wmt16/multimodal-task.html#task1
Y
ying 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30

If you use the dataset created for your task, please cite the following paper:
Multi30K: Multilingual English-German Image Descriptions.

@article{elliott-EtAl:2016:VL16,
 author    = {{Elliott}, D. and {Frank}, S. and {Sima"an}, K. and {Specia}, L.},
 title     = {Multi30K: Multilingual English-German Image Descriptions},
 booktitle = {Proceedings of the 6th Workshop on Vision and Language},
 year      = {2016},
 pages     = {70--74},
 year      = 2016
}
"""

31 32
from __future__ import print_function

Y
ying 已提交
33
import os
M
minqiyang 已提交
34
import six
Y
ying 已提交
35 36 37 38
import tarfile
import gzip
from collections import defaultdict

39
import paddle.dataset.common
M
minqiyang 已提交
40
import paddle.compat as cpt
Y
ying 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

__all__ = [
    "train",
    "test",
    "validation",
    "convert",
    "fetch",
    "get_dict",
]

DATA_URL = ("http://cloud.dlnel.org/filepub/"
            "?uuid=46a0808e-ddd8-427c-bacd-0dbc6d045fed")
DATA_MD5 = "0c38be43600334966403524a40dcd81e"

TOTAL_EN_WORDS = 11250
TOTAL_DE_WORDS = 19220

START_MARK = "<s>"
END_MARK = "<e>"
UNK_MARK = "<unk>"


Y
ying 已提交
63
def __build_dict(tar_file, dict_size, save_path, lang):
Y
ying 已提交
64 65 66
    word_dict = defaultdict(int)
    with tarfile.open(tar_file, mode="r") as f:
        for line in f.extractfile("wmt16/train"):
M
minqiyang 已提交
67
            line_split = line.strip().split(six.b("\t"))
Y
ying 已提交
68 69 70 71 72 73 74 75 76
            if len(line_split) != 2: continue
            sen = line_split[0] if lang == "en" else line_split[1]
            for w in sen.split():
                word_dict[w] += 1

    with open(save_path, "w") as fout:
        fout.write("%s\n%s\n%s\n" % (START_MARK, END_MARK, UNK_MARK))
        for idx, word in enumerate(
                sorted(
M
minqiyang 已提交
77
                    six.iteritems(word_dict), key=lambda x: x[1],
78
                    reverse=True)):
Y
ying 已提交
79 80 81 82
            if idx + 3 == dict_size: break
            fout.write("%s\n" % (word[0]))


Y
ying 已提交
83
def __load_dict(tar_file, dict_size, lang, reverse=False):
84
    dict_path = os.path.join(paddle.dataset.common.DATA_HOME,
Y
ying 已提交
85 86
                             "wmt16/%s_%d.dict" % (lang, dict_size))
    if not os.path.exists(dict_path) or (
87
            len(open(dict_path, "rb").readlines()) != dict_size):
Y
ying 已提交
88
        __build_dict(tar_file, dict_size, dict_path, lang)
Y
ying 已提交
89 90

    word_dict = {}
91
    with open(dict_path, "rb") as fdict:
Y
ying 已提交
92 93
        for idx, line in enumerate(fdict):
            if reverse:
M
minqiyang 已提交
94
                word_dict[idx] = cpt.to_text(line.strip())
Y
ying 已提交
95
            else:
M
minqiyang 已提交
96
                word_dict[cpt.to_text(line.strip())] = idx
Y
ying 已提交
97 98 99
    return word_dict


Y
ying 已提交
100
def __get_dict_size(src_dict_size, trg_dict_size, src_lang):
Y
ying 已提交
101 102 103
    src_dict_size = min(src_dict_size, (TOTAL_EN_WORDS if src_lang == "en" else
                                        TOTAL_DE_WORDS))
    trg_dict_size = min(trg_dict_size, (TOTAL_DE_WORDS if src_lang == "en" else
W
Wojciech Uss 已提交
104
                                        TOTAL_EN_WORDS))
Y
ying 已提交
105 106 107 108 109
    return src_dict_size, trg_dict_size


def reader_creator(tar_file, file_name, src_dict_size, trg_dict_size, src_lang):
    def reader():
Y
ying 已提交
110 111 112
        src_dict = __load_dict(tar_file, src_dict_size, src_lang)
        trg_dict = __load_dict(tar_file, trg_dict_size,
                               ("de" if src_lang == "en" else "en"))
Y
ying 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125

        # the indice for start mark, end mark, and unk are the same in source
        # language and target language. Here uses the source language
        # dictionary to determine their indices.
        start_id = src_dict[START_MARK]
        end_id = src_dict[END_MARK]
        unk_id = src_dict[UNK_MARK]

        src_col = 0 if src_lang == "en" else 1
        trg_col = 1 - src_col

        with tarfile.open(tar_file, mode="r") as f:
            for line in f.extractfile(file_name):
M
minqiyang 已提交
126
                line_split = line.strip().split(six.b("\t"))
Y
ying 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
                if len(line_split) != 2:
                    continue
                src_words = line_split[src_col].split()
                src_ids = [start_id] + [
                    src_dict.get(w, unk_id) for w in src_words
                ] + [end_id]

                trg_words = line_split[trg_col].split()
                trg_ids = [trg_dict.get(w, unk_id) for w in trg_words]

                trg_ids_next = trg_ids + [end_id]
                trg_ids = [start_id] + trg_ids

                yield src_ids, trg_ids, trg_ids_next

    return reader


def train(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 train set reader.

    This function returns the reader for train data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.


    NOTE:
    The original like for training data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The train reader.
    """

Y
fix ci.  
ying 已提交
179 180 181
    if src_lang not in ["en", "de"]:
        raise ValueError("An error language type.  Only support: "
                         "en (for English); de(for Germany).")
Y
ying 已提交
182 183
    src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
                                                   src_lang)
Y
ying 已提交
184 185

    return reader_creator(
186 187
        tar_file=paddle.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                "wmt16.tar.gz"),
Y
ying 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        file_name="wmt16/train",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def test(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 test set reader.

    This function returns the reader for test data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.

    NOTE:
    The original like for test data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The test reader.
    """

Y
fix ci.  
ying 已提交
227 228 229
    if src_lang not in ["en", "de"]:
        raise ValueError("An error language type. "
                         "Only support: en (for English); de(for Germany).")
Y
ying 已提交
230

Y
ying 已提交
231 232
    src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
                                                   src_lang)
Y
ying 已提交
233 234

    return reader_creator(
235 236
        tar_file=paddle.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                "wmt16.tar.gz"),
Y
ying 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        file_name="wmt16/test",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def validation(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 validation set reader.

    This function returns the reader for validation data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.

    NOTE:
    The original like for validation data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The validation reader.
    """
Y
fix ci.  
ying 已提交
275 276 277
    if src_lang not in ["en", "de"]:
        raise ValueError("An error language type. "
                         "Only support: en (for English); de(for Germany).")
Y
ying 已提交
278 279
    src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
                                                   src_lang)
Y
ying 已提交
280 281

    return reader_creator(
282 283
        tar_file=paddle.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                "wmt16.tar.gz"),
Y
ying 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        file_name="wmt16/val",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def get_dict(lang, dict_size, reverse=False):
    """
    return the word dictionary for the specified language.

    Args:
        lang(string): A string indicating which language is the source
                      language. Available options are: "en" for English
                      and "de" for Germany.
        dict_size(int): Size of the specified language dictionary.
        reverse(bool): If reverse is set to False, the returned python
                       dictionary will use word as key and use index as value.
                       If reverse is set to True, the returned python
                       dictionary will use index as key and word as value.

    Returns:
        dict: The word dictionary for the specific language.
    """

    if lang == "en": dict_size = min(dict_size, TOTAL_EN_WORDS)
    else: dict_size = min(dict_size, TOTAL_DE_WORDS)

311
    dict_path = os.path.join(paddle.dataset.common.DATA_HOME,
Y
ying 已提交
312
                             "wmt16/%s_%d.dict" % (lang, dict_size))
L
Luo Tao 已提交
313 314 315
    assert os.path.exists(dict_path), "Word dictionary does not exist. "
    "Please invoke paddle.dataset.wmt16.train/test/validation first "
    "to build the dictionary."
316
    tar_file = os.path.join(paddle.dataset.common.DATA_HOME, "wmt16.tar.gz")
Y
ying 已提交
317
    return __load_dict(tar_file, dict_size, lang, reverse)
Y
ying 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330


def fetch():
    """download the entire dataset.
    """
    paddle.v4.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                      "wmt16.tar.gz")


def convert(path, src_dict_size, trg_dict_size, src_lang):
    """Converts dataset to recordio format.
    """

331
    paddle.dataset.common.convert(
Y
ying 已提交
332 333 334 335 336 337 338
        path,
        train(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_train")
339
    paddle.dataset.common.convert(
Y
ying 已提交
340 341 342 343 344 345 346
        path,
        test(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_test")
347
    paddle.dataset.common.convert(
Y
ying 已提交
348 349 350 351 352 353 354
        path,
        validation(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_validation")