test_word2vec.py 4.5 KB
Newer Older
Q
QI JUN 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer

from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.executor import Executor

import numpy as np

init_program = Program()
program = Program()

embed_size = 32
hidden_size = 256
N = 5
batch_size = 32

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)

first_word = layers.data(
    name='firstw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)
second_word = layers.data(
    name='secondw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)
third_word = layers.data(
    name='thirdw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)
forth_word = layers.data(
    name='forthw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)
next_word = layers.data(
    name='nextw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)

embed_param_attr_1 = {
    'name': 'shared_w',
    'init_attr': {
        'max': 1.0,
        'type': 'uniform_random',
        'min': -1.0
    }
}
embed_param_attr_2 = {'name': 'shared_w'}

embed_first = layers.embedding(
    input=first_word,
    size=[dict_size, embed_size],
    data_type='float32',
    param_attr=embed_param_attr_1,
    program=program,
    init_program=init_program)
embed_second = layers.embedding(
    input=second_word,
    size=[dict_size, embed_size],
    data_type='float32',
    param_attr=embed_param_attr_2,
    program=program,
    init_program=init_program)

embed_third = layers.embedding(
    input=third_word,
    size=[dict_size, embed_size],
    data_type='float32',
    param_attr=embed_param_attr_2,
    program=program,
    init_program=init_program)
embed_forth = layers.embedding(
    input=forth_word,
    size=[dict_size, embed_size],
    data_type='float32',
    param_attr=embed_param_attr_2,
    program=program,
    init_program=init_program)

concat_embed = layers.concat(
    input=[embed_first, embed_second, embed_third, embed_forth],
    axis=1,
    program=program,
    init_program=init_program)

hidden1 = layers.fc(input=concat_embed,
                    size=hidden_size,
                    act='sigmoid',
                    program=program,
                    init_program=init_program)
predict_word = layers.fc(input=hidden1,
                         size=dict_size,
                         act='softmax',
                         program=program,
                         init_program=init_program)
cost = layers.cross_entropy(
    input=predict_word,
    label=next_word,
    program=program,
    init_program=init_program)
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)

sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)

train_reader = paddle.batch(
    paddle.dataset.imikolov.train(word_dict, N), batch_size)

place = core.CPUPlace()
exe = Executor(place)

exe.run(init_program, feed={}, fetch_list=[])
PASS_NUM = 100
for pass_id in range(PASS_NUM):
    for data in train_reader():
        input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)]
        input_data = map(lambda x: np.array(x).astype("int32"), input_data)
        input_data = map(lambda x: np.expand_dims(x, axis=1), input_data)

        first_data = input_data[0]
        first_tensor = core.LoDTensor()
        first_tensor.set(first_data, place)

        second_data = input_data[0]
        second_tensor = core.LoDTensor()
        second_tensor.set(second_data, place)

        third_data = input_data[0]
        third_tensor = core.LoDTensor()
        third_tensor.set(third_data, place)

        forth_data = input_data[0]
        forth_tensor = core.LoDTensor()
        forth_tensor.set(forth_data, place)

        next_data = input_data[0]
        next_tensor = core.LoDTensor()
        next_tensor.set(next_data, place)

        outs = exe.run(program,
                       feed={
                           'firstw': first_tensor,
                           'secondw': second_tensor,
                           'thirdw': third_tensor,
                           'forthw': forth_tensor,
                           'nextw': next_tensor
                       },
                       fetch_list=[avg_cost])
        out = np.array(outs[0])
        if out[0] < 10.0:
            exit(0)  # if avg cost less than 10.0, we think our code is good.
exit(1)