sequence_concat_op.h 5.9 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/strided_memcpy.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename T>
Y
Yancey1989 已提交
27
LoD concatLoD(const std::vector<const T*> ins, const size_t axis,
Y
Yancey1989 已提交
28 29 30 31
              const size_t level) {
  auto out_lod = ins[0]->lod();
  const size_t n = ins.size();
  if (axis == 0UL) {
Y
update  
Yancey1989 已提交
32 33 34
    for (size_t i = 1; i < n; ++i) {
      for (size_t j = 0; j < ins[i]->lod()[0].size(); ++j) {
        out_lod[0][j] += ins[i]->lod()[0][j];
Y
Yancey1989 已提交
35
      }
Y
update  
Yancey1989 已提交
36 37 38 39 40 41 42 43 44

      if (ins[0]->NumLevels() == 2) {
        for (size_t j = 1; j < ins[i]->lod()[1].size(); ++j) {
          if (level == 0UL) {
            out_lod[1].push_back(out_lod[1].back() + ins[i]->lod()[1][j] -
                                 ins[i]->lod()[1][j - 1]);
          } else if (level == 1UL) {
            out_lod[1][j] += ins[1]->lod()[1][j];
          }
Y
Yancey1989 已提交
45 46 47 48 49 50 51 52
        }
      }
    }
  }
  return out_lod;
}

template <typename Place, typename T>
Y
Yancey1989 已提交
53
class SequenceConcatOpKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
54 55 56 57 58 59 60
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
    const size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
    const size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
    const size_t n = ins.size();
Y
Yancey1989 已提交
61 62 63

    for (size_t i = 1; i < n; ++i) {
      PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), ins[i]->NumLevels(),
Y
update  
Yancey1989 已提交
64
                        "The levels of all the input LoDTensors "
Y
Yancey1989 已提交
65 66
                        "should be the same.");
      PADDLE_ENFORCE_EQ(ins[0]->dims().size(), ins[i]->dims().size(),
Y
Yancey1989 已提交
67
                        "The dimension size of all the input LoDTensors "
Y
Yancey1989 已提交
68 69 70 71 72 73
                        "should be the same.");

      const size_t dims_size = ins[i]->dims().size();
      for (size_t j = 0; j < dims_size; ++j) {
        if (j == axis) continue;
        PADDLE_ENFORCE_EQ(ins[0]->dims()[j], ins[i]->dims()[j],
Y
Yancey1989 已提交
74 75 76 77
                          "Except for the dimension of the specified "
                          "axis along which all the inputs are concatenated, "
                          "dimensions of all the other axises of the input "
                          "LoDTensors should be the same.");
Y
Yancey1989 已提交
78 79
      }
    }
Y
Yancey1989 已提交
80 81 82
    PADDLE_ENFORCE_GT(ins[0]->NumLevels(), level,
                      "The levels of all the input LoDTensors "
                      "should be greater than the specify level");
Y
Yancey1989 已提交
83

Y
Yancey1989 已提交
84
    out->mutable_data<T>(ctx.GetPlace());
Y
Yancey1989 已提交
85
    auto out_lod = concatLoD<LoDTensor>(ins, axis, level);
Y
Yancey1989 已提交
86 87 88
    out->set_lod(out_lod);

    auto out_lod_level = out_lod[level];
Y
Yancey1989 已提交
89
    for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
90 91
      Tensor out_t = out->Slice(static_cast<int>(out_lod_level[i]),
                                static_cast<int>(out_lod_level[i + 1]));
Y
Yancey1989 已提交
92 93 94
      auto out_stride = framework::stride(out_t.dims());
      size_t offset = 0;

Y
Yancey1989 已提交
95
      for (size_t j = 0; j < n; ++j) {
Y
Yancey1989 已提交
96 97
        auto in_lod_level = ins[j]->lod()[level];
        auto in_stride = framework::stride(ins[j]->dims());
98 99
        Tensor in_t = ins[j]->Slice(static_cast<int>(in_lod_level[i]),
                                    static_cast<int>(in_lod_level[i + 1]));
Y
Yancey1989 已提交
100 101 102 103 104 105 106 107 108 109
        size_t axis_dim = in_t.dims()[axis];
        StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride,
                         in_t.dims(), out_stride, out_t.data<T>() + offset);
        offset += axis_dim * in_stride[axis];
      }
    }
  }
};

template <typename Place, typename T>
Y
Yancey1989 已提交
110
class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    auto* out_grad =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto x_grads =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
    size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
    size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
    const size_t n = x_grads.size();

    // Set Grad(X) LoD as X
    for (size_t i = 0; i < n; i++) {
      x_grads[i]->set_lod(ins[i]->lod());
      x_grads[i]->mutable_data<T>(ctx.GetPlace());
    }

Y
Yancey1989 已提交
128
    auto out_lod = concatLoD<LoDTensor>(ins, axis, level);
Y
Yancey1989 已提交
129 130
    auto out_lod_level = out_lod[level];

Y
Yancey1989 已提交
131
    for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
Y
Yancey1989 已提交
132
      Tensor out_grad_t =
133 134
          out_grad->Slice(static_cast<int>(out_lod_level[i]),
                          static_cast<int>(out_lod_level[i + 1]));
Y
Yancey1989 已提交
135 136 137
      auto out_grad_stride = framework::stride(out_grad_t.dims());
      size_t offset = 0;

Y
Yancey1989 已提交
138
      for (size_t j = 0; j < n; ++j) {
Y
Yancey1989 已提交
139 140 141
        auto x_grad_lod_level = x_grads[j]->lod()[level];
        auto x_grad_stride = framework::stride(x_grads[j]->dims());
        Tensor x_grad_t =
142 143
            x_grads[j]->Slice(static_cast<int>(x_grad_lod_level[i]),
                              static_cast<int>(x_grad_lod_level[i + 1]));
Y
Yancey1989 已提交
144 145 146 147 148 149 150 151 152 153 154 155
        size_t axis_dim = x_grad_t.dims()[axis];
        StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>() + offset,
                         out_grad_stride, out_grad_t.dims(), x_grad_stride,
                         x_grad_t.data<T>());
        offset += axis_dim * out_grad_stride[axis];
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle