blas_impl.h 14.2 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
T
tensor-tang 已提交
15
#include <limits>
Y
Yu Yang 已提交
16
#include <vector>
Y
Yu Yang 已提交
17 18 19 20 21 22 23 24 25
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct CBlas;

26
#ifdef PADDLE_WITH_MKLML
Y
Yu Yang 已提交
27 28
template <>
struct CBlas<float> {
Y
Yu Yang 已提交
29 30
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
31
    platform::dynload::cblas_sgemm(args...);
Y
Yu Yang 已提交
32
  }
Y
Yu Yang 已提交
33

T
tensor-tang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  template <typename... ARGS>
  static float *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_sgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_sgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_sgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_sgemm_free(args...);
  }

T
tensor-tang 已提交
54 55 56 57 58 59
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_sgemm(args...);
  }
#endif
T
tensor-tang 已提交
60

Y
Yu Yang 已提交
61 62
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    platform::dynload::cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    platform::dynload::cblas_sgemv(args...);
  }

  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    platform::dynload::cblas_sgemm_batch(args...);
Y
Yu Yang 已提交
79 80
  }

81 82
  template <typename... ARGS>
  static void VADD(ARGS... args) {
83 84
    platform::dynload::vsAdd(args...);
  }
T
tensor-tang 已提交
85 86 87 88 89

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vsMul(args...);
  }
90 91 92 93 94 95 96 97 98
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    platform::dynload::cblas_dgemm(args...);
  }

T
tensor-tang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  template <typename... ARGS>
  static double *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_dgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_dgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_dgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_dgemm_free(args...);
  }

T
tensor-tang 已提交
119 120 121 122 123 124
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_dgemm(args...);
  }
#endif
T
tensor-tang 已提交
125

126 127 128
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    platform::dynload::cblas_daxpy(args...);
129 130 131 132
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
133
    platform::dynload::cblas_dcopy(args...);
134 135
  }

Y
Yu Yang 已提交
136 137
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
138
    platform::dynload::cblas_dgemv(args...);
Y
Yu Yang 已提交
139 140 141 142
  }

  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
143 144 145 146 147 148 149
    platform::dynload::cblas_dgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vdAdd(args...);
  }
T
tensor-tang 已提交
150 151 152 153 154

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vdMul(args...);
  }
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
};

#else

template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_sgemv(args...);
Y
Yu Yang 已提交
179
  }
Y
Yu Yang 已提交
180 181 182 183
};

template <>
struct CBlas<double> {
Y
Yu Yang 已提交
184 185 186 187
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_dgemm(args...);
  }
Y
Yu Yang 已提交
188 189 190 191 192 193

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_daxpy(args...);
  }

194 195 196 197 198
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_dcopy(args...);
  }

Y
Yu Yang 已提交
199 200 201 202
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_dgemv(args...);
  }
Y
Yu Yang 已提交
203
};
204
#endif
T
tensor-tang 已提交
205

Y
Yu Yang 已提交
206 207
template <>
struct CBlas<platform::float16> {
Y
Yu Yang 已提交
208
  static void GEMM(...) { PADDLE_THROW("float16 GEMM not supported on CPU"); }
T
tensor-tang 已提交
209 210 211
  static void SMM_GEMM(...) {
    PADDLE_THROW("float16 SMM_GEMM not supported on CPU");
  }
T
tensor-tang 已提交
212
  static void VMUL(...) { PADDLE_THROW("float16 VMUL not supported on CPU"); }
Y
Yu Yang 已提交
213 214 215 216 217
#ifdef PADDLE_WITH_MKLML
  static void GEMM_BATCH(...) {
    PADDLE_THROW("float16 GEMM_BATCH not supported on CPU");
  }
#endif
Y
Yu Yang 已提交
218
};
T
tensor-tang 已提交
219

T
tensor-tang 已提交
220
template <typename T>
T
tensor-tang 已提交
221 222
inline bool UseXSMM(const int &m, const int &n, const int &k, bool transa,
                    bool transb, const T &alpha, const T &beta) {
T
tensor-tang 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom
  constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;
  if (m * n * k > LIBXSMM_THRESHOLD || transa || transb ||
      std::abs<T>(alpha - static_cast<T>(1) >
                  std::numeric_limits<T>::epsilon()) ||
      std::abs<T>(beta) > std::numeric_limits<T>::epsilon()) {
    return false;
  } else {
    return true;
  }
#endif
  return false;
}
Y
Yu Yang 已提交
238

T
tensor-tang 已提交
239 240 241 242 243 244 245 246
template <>
inline bool UseXSMM<platform::float16>(const int &m, const int &n, const int &k,
                                       bool transa, bool transb,
                                       const platform::float16 &alpha,
                                       const platform::float16 &beta) {
  return false;
}

Y
Yu Yang 已提交
247
template <typename T>
T
tensor-tang 已提交
248 249 250 251
inline void GEMM_WARP(CBLAS_ORDER order, CBLAS_TRANSPOSE transA,
                      CBLAS_TRANSPOSE transB, int M, int N, int K, T alpha,
                      const T *A, int lda, const T *B, int ldb, T beta, T *C,
                      int ldc) {
T
tensor-tang 已提交
252
#ifdef PADDLE_WITH_LIBXSMM
T
tensor-tang 已提交
253 254
  if (UseXSMM<T>(M, N, K, transA != CblasNoTrans, transB != CblasNoTrans, alpha,
                 beta)) {
T
tensor-tang 已提交
255 256 257
    // Note: SMM use ColMajor
    const char transa = 'N';
    const char transb = 'N';
258
    CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &ldb, A, &lda,
T
tensor-tang 已提交
259
                       &beta, C, &ldc);
T
tensor-tang 已提交
260 261
    return;
  }
T
tensor-tang 已提交
262
#endif
T
tensor-tang 已提交
263 264

#ifdef PADDLE_MKL_SPLIT_GEMM
T
tensor-tang 已提交
265 266 267 268 269
  constexpr int bs = 2;
  if (M % bs == 0 && transA == CblasNoTrans && transB == CblasNoTrans) {
    for (int off = 0; off < M; off += bs) {
      CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, bs, N, K, alpha,
                     A + off * lda, lda, B, ldb, beta, C + off * ldb, ldc);
T
tensor-tang 已提交
270
    }
T
tensor-tang 已提交
271
    return;
T
tensor-tang 已提交
272 273
  }
#endif
T
tensor-tang 已提交
274 275 276 277
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
}

T
tensor-tang 已提交
278
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
template <>
template <typename T>
T *Blas<platform::CPUDeviceContext>::GEMM_ALLOC(const CBLAS_IDENTIFIER id,
                                                const int M, const int N,
                                                const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                                 const CBLAS_TRANSPOSE trans,
                                                 int M, int N, int K,
                                                 const T alpha, const T *src,
                                                 const int ld, T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_COMPUTE(
    int transA, int transB, int M, int N, int K, const T *A, const int lda,
    const T *B, const int ldb, T beta, T *C, const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb,
                         beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
T
tensor-tang 已提交
311
#endif
T
tensor-tang 已提交
312

T
tensor-tang 已提交
313 314 315 316 317 318 319 320 321 322 323
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            const T *B, T beta, T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  GEMM_WARP<T>(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
               beta, C, ldc);
Y
Yu Yang 已提交
324 325 326 327
}

template <>
template <typename T>
Y
Yu Yang 已提交
328 329 330 331
void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
T
tensor-tang 已提交
332 333 334
  GEMM_WARP<T>(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
               transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
               lda, B, ldb, beta, C, ldc);
Y
Yu Yang 已提交
335 336
}

Y
Yu Yang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a, bool trans_a,
                                 const framework::Tensor &mat_b, bool trans_b,
                                 T alpha, framework::Tensor *mat_out,
                                 T beta) const {
  auto dim_a = mat_a.dims();
  auto dim_b = mat_b.dims();
  auto dim_out = mat_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");
  PADDLE_ENFORCE(
      mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(),
      "The places of matrices must be same");

  int M = dim_out[0];
  int N = dim_out[1];
  int K = !trans_a ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;

  this->GEMM(transA, transB, M, N, K, alpha, mat_a.data<T>(), mat_b.data<T>(),
             beta, mat_out->data<T>());
}

Y
Yu Yang 已提交
363 364 365 366 367 368 369
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::AXPY(int n, T alpha, const T *x,
                                            T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
  this->template VCOPY<T>(n, y, z);
  this->template AXPY<T>(n, 1., x, z);
#endif
}

T
tensor-tang 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
#endif
}

Y
Yu Yang 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
                                            const T *A, const T *B, T beta,
                                            T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                       a_array.data(), &lda, b_array.data(), &ldb, &beta,
                       c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
Y
yuyang18 已提交
435 436 437
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
Y
Yu Yang 已提交
438 439 440 441 442
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}

Y
Yu Yang 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
                                 const MatDescriptor &dim_a,
                                 const framework::Tensor &mat_b,
                                 const MatDescriptor &dim_b, T alpha,
                                 framework::Tensor *mat_out, T beta) const {
  PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_);
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
                           dim_a.width_, alpha, mat_a.data<T>(),
                           mat_b.data<T>(), beta, mat_out->data<T>());
  } else {
    PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ ||
                   dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0);
    this->template BatchedGEMM<T>(
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
        mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_);
  }
}

Y
Yu Yang 已提交
468 469 470
}  // namespace math
}  // namespace operators
}  // namespace paddle