ConvOpTest.h 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "FunctionTest.h"

namespace paddle {

template <DeviceType DType1, DeviceType DType2>
void forward(Compare2Function<DType1, DType2>& test,
             const TensorShape& input,
             const TensorShape& filter,
             const TensorShape& output) {
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
  test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
  test.run();
}

template <DeviceType DType1, DeviceType DType2>
void backward_input(Compare2Function<DType1, DType2>& test,
                    const TensorShape& input,
                    const TensorShape& filter,
                    const TensorShape& output) {
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
  test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
  test.run();
}

template <DeviceType DType1, DeviceType DType2>
void backward_filter(Compare2Function<DType1, DType2>& test,
                     const TensorShape& input,
                     const TensorShape& filter,
                     const TensorShape& output) {
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
  test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter), ADD_TO);
  test.run();
}

template <DeviceType DType1, DeviceType DType2>
using Function = void (*)(Compare2Function<DType1, DType2>& test,
                          const TensorShape& input,
                          const TensorShape& filter,
                          const TensorShape& output);

/**
 * \brief A basic convolution function test interface.
 *
 * \param conv1         type name of convolution function 1.
 * \param conv2         type name of convolution function 2.
 * \param function      test function, can be one of the forward, backward_input
 *                      backward_filter function.
 * Example:
 * 1. Compare GemmConv's CPU and GPU implementation:
 *   Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
 *      "GemmConv-CPU", "GemmConv-GPU", forward);
 */
template <DeviceType DType1, DeviceType DType2>
void Convolution(const std::string& conv1,
                 const std::string& conv2,
                 Function<DType1, DType2> function) {
  for (size_t batchSize : {1, 5}) {
    for (size_t inputSize : {7, 14, 31}) {
      for (size_t filterSize : {1, 3, 5}) {
        for (size_t inputChannels : {3, 16}) {
          for (size_t outputChannels : {3, 16}) {
            if (outputChannels < inputChannels) continue;
            for (size_t stride : {1, 2}) {
              for (size_t padding : {0, 1}) {
                if (padding >= filterSize) break;
H
hedaoyuan 已提交
83 84 85 86 87 88

                // NNPACK only supports stride = 1 if batchSize > 1
                if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
                    batchSize > 1 && stride > 1)
                  break;

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                size_t outputSize =
                    (inputSize - filterSize + 2 * padding + stride) / stride;
                VLOG(3) << " batchSize=" << batchSize
                        << " inputChannels=" << inputChannels
                        << " inputHeight=" << inputSize
                        << " inputWidth=" << inputSize
                        << " outputChannels=" << outputChannels
                        << " filterHeight=" << filterSize
                        << " filterWidth=" << filterSize
                        << " outputHeight=" << outputSize
                        << " outputWidth=" << outputSize << " stride=" << stride
                        << " padding=" << padding;

                std::vector<size_t> paddings = {padding, padding};
                std::vector<size_t> strides = {stride, stride};
                Compare2Function<DType1, DType2> test(
                    conv1,
                    conv2,
                    FuncConfig()
                        .set("paddings", paddings)
                        .set("strides", strides)
                        .set("groups", (size_t)1)
H
hedaoyuan 已提交
111
                        .set("algo", (std::string) "auto"));
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

                TensorShape input{
                    batchSize, inputChannels, inputSize, inputSize};
                TensorShape filter{
                    outputChannels, inputChannels, filterSize, filterSize};
                TensorShape output{
                    batchSize, outputChannels, outputSize, outputSize};

                function(test, input, filter, output);
              }
            }
          }
        }
      }
    }
  }
}

/**
 * \brief A convolution function test interface for
 *        image height is not equal image width.
 */
template <DeviceType DType1, DeviceType DType2>
void Convolution2(const std::string& conv1,
                  const std::string& conv2,
                  Function<DType1, DType2> function) {
  for (size_t batchSize : {4}) {
    for (size_t inputHeight : {7, 31}) {
      for (size_t inputWidth : {10, 54}) {
        for (size_t filterHeight : {1, 5}) {
          for (size_t filterWidth : {3, 7}) {
            for (size_t inputChannels : {7}) {
              for (size_t outputChannels : {7}) {
                size_t stride = 1;
                size_t padding = 0;
                size_t outputHeight =
                    (inputHeight - filterHeight + 2 * padding + stride) /
                    stride;
                size_t outputWidth =
                    (inputWidth - filterWidth + 2 * padding + stride) / stride;
                VLOG(3) << " batchSize=" << batchSize
                        << " inputChannels=" << inputChannels
                        << " inputHeight=" << inputHeight
                        << " inputWidth=" << inputWidth
                        << " outputChannels=" << outputChannels
                        << " filterHeight=" << filterHeight
                        << " filterWidth=" << filterWidth
                        << " outputHeight=" << outputHeight
                        << " outputWidth=" << outputWidth
                        << " stride=" << stride << " padding=" << padding;

                std::vector<size_t> paddings = {padding, padding};
                std::vector<size_t> strides = {stride, stride};
                Compare2Function<DType1, DType2> test(
                    conv1,
                    conv2,
                    FuncConfig()
                        .set("paddings", paddings)
                        .set("strides", strides)
                        .set("groups", (size_t)1)
H
hedaoyuan 已提交
172
                        .set("algo", (std::string) "auto"));
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

                TensorShape input{
                    batchSize, inputChannels, inputHeight, inputWidth};
                TensorShape filter{
                    outputChannels, inputChannels, filterHeight, filterWidth};
                TensorShape output{
                    batchSize, outputChannels, outputHeight, outputWidth};

                function(test, input, filter, output);
              }
            }
          }
        }
      }
    }
  }
}

/**
 * \brief A convolution function test interface for depthwise convolution.
 */
template <DeviceType DType1, DeviceType DType2>
void DepthwiseConvolution(const std::string& conv1,
                          const std::string& conv2,
                          Function<DType1, DType2> function) {
  for (size_t batchSize : {1, 32}) {
    for (size_t inputSize : {7, 14, 54}) {
      for (size_t filterSize : {3, 4}) {
        for (size_t inputChannels : {32}) {
          for (size_t outputChannels : {32, 64}) {
            for (size_t stride : {1, 2}) {
              for (size_t padding : {0, 1}) {
H
hedaoyuan 已提交
205 206 207 208 209
                // NNPACK only supports stride = 1 if batchSize > 1
                if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
                    batchSize > 1 && stride > 1)
                  break;

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                size_t outputSize =
                    (inputSize - filterSize + 2 * padding + stride) / stride;
                VLOG(3) << " batchSize=" << batchSize
                        << " inputChannels=" << inputChannels
                        << " inputHeight=" << inputSize
                        << " inputWidth=" << inputSize
                        << " outputChannels=" << outputChannels
                        << " filterHeight=" << filterSize
                        << " filterWidth=" << filterSize
                        << " outputHeight=" << outputSize
                        << " outputWidth=" << outputSize << " stride=" << stride
                        << " padding=" << padding;

                std::vector<size_t> paddings = {padding, padding};
                std::vector<size_t> strides = {stride, stride};
                size_t groups = inputChannels;
                Compare2Function<DType1, DType2> test(
                    conv1,
                    conv2,
                    FuncConfig()
                        .set("paddings", paddings)
                        .set("strides", strides)
                        .set("groups", groups)
H
hedaoyuan 已提交
233
                        .set("algo", (std::string) "auto"));
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

                TensorShape input{
                    batchSize, inputChannels, inputSize, inputSize};
                TensorShape filter{groups,
                                   outputChannels / groups,
                                   inputChannels / groups,
                                   filterSize,
                                   filterSize};
                TensorShape output{
                    batchSize, outputChannels, outputSize, outputSize};

                function(test, input, filter, output);
              }
            }
          }
        }
      }
    }
  }
}

}  // namespace paddle