nets.py 3.6 KB
Newer Older
F
fengjiayi 已提交
1 2
import paddle.v2.framework.layers as layers

D
dzhwinter 已提交
3 4
__all__ = ["simple_img_conv_pool", "sequence_conv_pool"]

F
fengjiayi 已提交
5 6 7

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
8
                         filter_size,
F
fengjiayi 已提交
9 10 11
                         pool_size,
                         pool_stride,
                         act,
Q
Qiao Longfei 已提交
12
                         pool_type='max',
F
fengjiayi 已提交
13 14
                         program=None,
                         init_program=None):
F
fengjiayi 已提交
15 16 17 18 19
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        act=act,
F
fengjiayi 已提交
20 21
        program=program,
        init_program=init_program)
F
fengjiayi 已提交
22 23 24 25

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        pool_type=pool_type,
        pool_stride=pool_stride,
        program=program,
        init_program=init_program)
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=None,
                   pool_stride=1,
                   pool_type=None,
                   program=None,
                   init_program=None):
    """
    Image Convolution Group, Used for vgg net.
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
           isinstance(conv_num_filter, tuple)

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
            act=local_conv_act,
            program=program,
            init_program=init_program)

        if conv_with_batchnorm[i]:
            tmp = layers.batch_norm(
                input=tmp,
                act=conv_act,
                program=program,
                init_program=init_program)
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
                tmp = layers.dropout(
                    x=tmp,
                    dropout_prob=drop_rate,
                    program=program,
                    init_program=init_program)

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
F
fengjiayi 已提交
95
        pool_stride=pool_stride,
F
fengjiayi 已提交
96 97
        program=program,
        init_program=init_program)
F
fengjiayi 已提交
98
    return pool_out
D
dzhwinter 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
                       pool_size,
                       pool_stride,
                       act,
                       program=None,
                       init_program=None):
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        act=act,
        program=program,
        init_program=init_program)

    pool_out = layers.sequence_pool(
        input=conv_out,
        pool_size=pool_size,
        pool_type='max',
        pool_stride=pool_stride,
        program=program,
        init_program=init_program)
    return pool_out