prune.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/prune.h"
Y
Yang Yang 已提交
16 17 18 19

#include <algorithm>
#include <set>
#include <string>
K
Kexin Zhao 已提交
20
#include <unordered_map>
Y
Yang Yang 已提交
21 22 23 24 25 26 27 28 29
#include <vector>

#include <glog/logging.h>

namespace paddle {
namespace framework {

const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";
30 31
const std::string kDropOutOpType = "dropout";
const std::string kBatchNormOpType = "batch_norm";
Y
Yang Yang 已提交
32

33
bool HasDependentVar(const proto::OpDesc& op_desc,
Y
Yang Yang 已提交
34 35 36 37 38 39 40 41 42 43 44
                     const std::set<std::string>& dependent_vars) {
  for (auto& var : op_desc.outputs()) {
    for (auto& argu : var.arguments()) {
      if (dependent_vars.count(argu) != 0) {
        return true;
      }
    }
  }
  return false;
}

45
bool IsTarget(const proto::OpDesc& op_desc) {
Y
Yang Yang 已提交
46 47 48 49 50 51
  if (op_desc.has_is_target()) {
    return op_desc.is_target();
  }
  return false;
}

K
Kexin Zhao 已提交
52 53 54 55 56 57 58 59 60
int GetSubBlockIndex(const proto::OpDesc& op_desc) {
  for (auto& attr : op_desc.attrs()) {
    if (attr.type() == proto::AttrType::BLOCK) {
      PADDLE_ENFORCE(attr.has_block_idx());
      return attr.block_idx();
    }
  }
  return -1;
}
Y
Yang Yang 已提交
61

K
Kexin Zhao 已提交
62 63 64 65 66 67 68 69 70 71 72 73
bool HasSubBlock(const proto::OpDesc& op_desc) {
  return GetSubBlockIndex(op_desc) > 0;
}

// block_id is the idx of the current block in the input desc
// parent_block_id is the idx of the parent of the current block
// in the output desc, -1 means the current block is global block
// dependent_vars is passed recursively from the parent block to
// the child block to help pruning
void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
                int block_id, int parent_block_id,
                std::set<std::string>& dependent_vars) {
Y
Yang Yang 已提交
74
  auto& block = input.blocks(block_id);
Y
Yang Yang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  auto& ops = block.ops();

  bool expect_feed = true;
  for (auto& op_desc : ops) {
    PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed,
                   "All FeedOps are at the beginning of the ProgramDesc");
    expect_feed = (op_desc.type() == kFeedOpType);
  }

  bool expect_fetch = true;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;
    PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch,
                   "All FetchOps must at the end of the ProgramDesc");
    expect_fetch = (op_desc.type() == kFetchOpType);
  }

  std::vector<bool> should_run;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;
Y
Yang Yang 已提交
95
    if (IsTarget(op_desc) || HasDependentVar(op_desc, dependent_vars)) {
Y
Yang Yang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
      // insert its input to the dependency graph
      for (auto& var : op_desc.inputs()) {
        for (auto& argu : var.arguments()) {
          dependent_vars.insert(argu);
        }
      }
      should_run.push_back(true);
    } else {
      should_run.push_back(false);
    }
  }

  // since we are traversing the ProgramDesc in reverse order
  // we reverse the should_run vector
  std::reverse(should_run.begin(), should_run.end());

K
Kexin Zhao 已提交
112 113 114 115 116 117
  // copy the current block from input to output
  auto* block_field = output->mutable_blocks();
  *block_field->Add() = input.blocks(block_id);

  int output_block_id = output->blocks_size() - 1;
  auto* output_block = output->mutable_blocks(output_block_id);
118 119
  output_block->set_idx(output_block_id);
  output_block->set_parent_idx(parent_block_id);
K
Kexin Zhao 已提交
120 121

  auto* op_field = output_block->mutable_ops();
Y
Yang Yang 已提交
122 123 124
  op_field->Clear();
  for (size_t i = 0; i < should_run.size(); ++i) {
    if (should_run[i]) {
K
Kexin Zhao 已提交
125 126 127 128 129
      auto* op = op_field->Add();
      *op = input.blocks(block_id).ops(i);
      if (HasSubBlock(*op)) {
        // create sub_block_dependent_vars here to help prune the sub block
        std::set<std::string> sub_block_dependent_vars;
130
        for (auto& var : op->inputs()) {
K
Kexin Zhao 已提交
131 132 133 134
          for (auto& argu : var.arguments()) {
            sub_block_dependent_vars.insert(argu);
          }
        }
135
        for (auto& var : op->outputs()) {
K
Kexin Zhao 已提交
136 137 138 139 140 141 142 143 144
          for (auto& argu : var.arguments()) {
            sub_block_dependent_vars.insert(argu);
          }
        }
        // GetSubBlockIndex(*op) is the idx of the sub_block in the input desc
        // output_block_id is the idx of the current block in the output desc
        prune_impl(input, output, GetSubBlockIndex(*op), output_block_id,
                   sub_block_dependent_vars);
      }
Y
Yang Yang 已提交
145 146
    }
  }
K
Kexin Zhao 已提交
147

K
Kexin Zhao 已提交
148 149 150
  // remove the VarDescs in BlockDesc that are not referenced in
  // the pruned OpDescs
  std::unordered_map<std::string, proto::VarDesc> var_map;
K
Kexin Zhao 已提交
151
  auto* var_field = output->mutable_blocks(output_block_id)->mutable_vars();
K
Kexin Zhao 已提交
152 153
  for (const auto& var : *var_field) {
    var_map[var.name()] = var;
K
Kexin Zhao 已提交
154 155
  }

156
  std::set<std::string> var_names;
K
Kexin Zhao 已提交
157 158
  for (const auto& op : *op_field) {
    auto& input_field = op.inputs();
K
Kexin Zhao 已提交
159 160
    for (auto& input_var : input_field) {
      for (auto& arg : input_var.arguments()) {
161 162 163
        if (var_map.count(arg) != 0) {
          var_names.insert(arg);
        }
K
Kexin Zhao 已提交
164 165 166
      }
    }
    auto& output_field = op.outputs();
K
Kexin Zhao 已提交
167 168
    for (auto& output_var : output_field) {
      for (auto& arg : output_var.arguments()) {
169 170 171
        if (var_map.count(arg) != 0) {
          var_names.insert(arg);
        }
K
Kexin Zhao 已提交
172 173 174
      }
    }
  }
175 176 177 178 179

  var_field->Clear();
  for (const auto& name : var_names) {
    *var_field->Add() = var_map[name];
  }
Y
Yang Yang 已提交
180
}
Y
Yang Yang 已提交
181

182
// TODO(fengjiayi): Prune() could be inplaced to avoid unnecessary copies
183
void Prune(const proto::ProgramDesc& input, proto::ProgramDesc* output) {
184
  std::set<std::string> dependent_vars;
K
fix bug  
Kexin Zhao 已提交
185
  output->clear_blocks();
186
  prune_impl(input, output, 0, -1, dependent_vars);
Y
Yang Yang 已提交
187 188
}

189 190
void inference_optimize_impl(const proto::ProgramDesc& input,
                             proto::ProgramDesc* output, int block_id) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  *output = input;
  auto* op_field = output->mutable_blocks(block_id)->mutable_ops();
  for (auto& op_desc : *op_field) {
    if (op_desc.type() == kDropOutOpType ||
        op_desc.type() == kBatchNormOpType) {
      for (auto& attr : *op_desc.mutable_attrs()) {
        if (attr.name() == "is_test") {
          attr.set_b(true);
          break;
        }
      }
    }
  }
}

206 207
void InferenceOptimize(const proto::ProgramDesc& input,
                       proto::ProgramDesc* output) {
208 209 210
  inference_optimize_impl(input, output, 0);
}

Y
Yang Yang 已提交
211 212
}  // namespace framework
}  // namespace paddle