trace_op.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/trace_op.h"

namespace paddle {
namespace operators {

class TraceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::NotFound("Input of TraceOp is not found."));

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output of TraceOp is not found."));

    int dim1 = ctx->Attrs().Get<int>("dim1");
    int dim2 = ctx->Attrs().Get<int>("dim2");

    auto x_dims = ctx->GetInputDim("Input");

    int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1;
    int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2;

    PADDLE_ENFORCE_GE(
        x_dims.size(), 2,
        platform::errors::OutOfRange(
            "trace requires an tensor of at least two dimensions"));
    PADDLE_ENFORCE_LT(
        dim1_, x_dims.size(),
        platform::errors::OutOfRange(
            "Attr(dim1) is out of range (expected to be in range of [%ld, "
            "%ld], but got %ld).",
            -(x_dims.size()), (x_dims.size() - 1), dim1));
    PADDLE_ENFORCE_LT(
        dim2_, x_dims.size(),
        platform::errors::OutOfRange(
            "Attr(dim2) is out of range (expected to be in range of [%ld, "
            "%ld], but got %ld).",
            -(x_dims.size()), (x_dims.size() - 1), dim2));
    PADDLE_ENFORCE_NE(dim1_, dim2_,
                      platform::errors::InvalidArgument(
                          "The dimensions should not be identical "
                          "%ld vs %ld.",
                          dim1, dim2));

    auto sizes = vectorize(x_dims);
    if (x_dims.size() == 2) {
      sizes.clear();
      sizes.push_back(1);
    } else {
      sizes.erase(sizes.begin() + std::max(dim1_, dim2_));
      sizes.erase(sizes.begin() + std::min(dim1_, dim2_));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(sizes));
  }
};

class TraceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(Tensor) The input tensor, from which the diagonals are taken.");
    AddOutput("Out", "(Tensor) the sum along diagonals of the input tensor");
    AddAttr<int>(
        "offset",
        R"DOC((int, default 0), offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0.
        )DOC")
        .SetDefault(0);
    AddAttr<int>(
        "dim1",
        R"DOC((int, default 0), the first dim of the 2-D planes from which the diagonals should be taken. 
        Can be both positive and negative. Default: 0.
        )DOC")
        .SetDefault(-2);
    AddAttr<int>(
        "dim2",
        R"DOC((int, default 1), the second dim of the 2-D planes from which the diagonals should be taken. 
        Can be both positive and negative. Default: 1.
        )DOC")
        .SetDefault(-1);
    AddComment(R"DOC(
Trace Operator.
Return the sum along diagonals of the input tensor.
The behavior of this operator is similar to how `numpy.trace` works.

If Input is 2-D, returns the sum of diagonal. 
If Input has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
the 2-D planes specified by dim1 and dim2.

)DOC");
  }
};
class TraceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::NotFound("Input(Input) of TraceOp is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Input")), true,
                      platform::errors::NotFound(
                          "Output(Input@GRAD) of TraceGradOp is not found."));
    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("Input"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class TraceGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("trace_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(TraceGradNoNeedBufferVarsInference,
                                    "Input");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(trace, ops::TraceOp, ops::TraceOpMaker,
                  ops::TraceGradOpMaker<paddle::framework::OpDesc>,
                  ops::TraceGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(trace_grad, ops::TraceOpGrad,
                  ops::TraceGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(
    trace, ops::TraceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::TraceKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TraceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TraceKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    trace_grad, ops::TraceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::TraceGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TraceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TraceGradKernel<paddle::platform::CPUDeviceContext, int64_t>);