evaluators.py 22.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.config_parser import *
from default_decorators import *

Q
qijun 已提交
18 19 20 21 22 23 24 25
__all__ = [
    "evaluator_base", "classification_error_evaluator", "auc_evaluator",
    "pnpair_evaluator", "precision_recall_evaluator", "ctc_error_evaluator",
    "chunk_evaluator", "sum_evaluator", "column_sum_evaluator",
    "value_printer_evaluator", "gradient_printer_evaluator",
    "maxid_printer_evaluator", "maxframe_printer_evaluator",
    "seqtext_printer_evaluator", "classification_error_printer_evaluator"
]
Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35


class EvaluatorAttribute(object):
    FOR_CLASSIFICATION = 1
    FOR_REGRESSION = 1 << 1
    FOR_RANK = 1 << 2
    FOR_PRINT = 1 << 3
    FOR_UTILS = 1 << 4

    KEYS = [
Q
qijun 已提交
36
        "for_classification", "for_regression", "for_rank", "for_print",
Z
zhangjinchao01 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        "for_utils"
    ]

    @staticmethod
    def to_key(idx):
        tmp = 1
        for i in xrange(0, len(EvaluatorAttribute.KEYS)):
            if idx == tmp:
                return EvaluatorAttribute.KEYS[i]
            else:
                tmp = (tmp << 1)


def evaluator(*attrs):
    def impl(method):
        for attr in attrs:
            setattr(method, EvaluatorAttribute.to_key(attr), True)
        method.is_evaluator = True
        return method
Q
qijun 已提交
56

Z
zhangjinchao01 已提交
57 58
    return impl

Q
qijun 已提交
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
def evaluator_base(
        input,
        type,
        label=None,
        weight=None,
        name=None,
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
        delimited=None,
L
Liang Zhao 已提交
74
        top_k=None,
75
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
76
    """
L
luotao02 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    Evaluator will evaluate the network status while training/testing.

    User can use evaluator by classify/regression job. For example.

    ..  code-block:: python

        classify(prediction, output, evaluator=classification_error_evaluator)

    And user could define evaluator separately as follow.

    ..  code-block:: python

        classification_error_evaluator("ErrorRate", prediction, label)

    The evaluator often contains a name parameter. It will also be printed when
    evaluating network. The printed information may look like the following.

    ..  code-block:: text

         Batch=200 samples=20000 AvgCost=0.679655 CurrentCost=0.662179 Eval:
         classification_error_evaluator=0.4486
         CurrentEval: ErrorRate=0.3964
99

Z
zhangjinchao01 已提交
100 101 102 103 104 105 106 107
    :param input: Input layers, a object of LayerOutput or a list of
                  LayerOutput.
    :type input: list|LayerOutput
    :param label: An input layer containing the ground truth label.
    :type label: LayerOutput|None
    :param weight: An input layer which is a weight for each sample.
                   Each evaluator may calculate differently to use this weight.
    :type weight: LayerOutput.
L
Liang Zhao 已提交
108 109
    :param top_k: number k in top-k error rate
    :type top_k: int
Z
zhangjinchao01 已提交
110 111
    """
    # inputs type assertions.
112 113 114 115
    assert classification_threshold is None or isinstance(
        classification_threshold, float)
    assert positive_label is None or isinstance(positive_label, int)
    assert num_results is None or isinstance(num_results, int)
L
Liang Zhao 已提交
116
    assert top_k is None or isinstance(top_k, int)
Z
zhangjinchao01 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

    if not isinstance(input, list):
        input = [input]

    if label:
        input.append(label)
    if weight:
        input.append(weight)

    Evaluator(
        name=name,
        type=type,
        inputs=[i.name for i in input],
        chunk_scheme=chunk_scheme,
        num_chunk_types=num_chunk_types,
        classification_threshold=classification_threshold,
        positive_label=positive_label,
        dict_file=dict_file,
        result_file=result_file,
136
        delimited=delimited,
L
Liang Zhao 已提交
137 138
        num_results=num_results,
        top_k=top_k,
139
        excluded_chunk_types=excluded_chunk_types, )
Z
zhangjinchao01 已提交
140

Q
qijun 已提交
141

Z
zhangjinchao01 已提交
142 143
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
Q
qijun 已提交
144 145 146 147
def classification_error_evaluator(input,
                                   label,
                                   name=None,
                                   weight=None,
L
Liang Zhao 已提交
148
                                   top_k=None,
Q
qijun 已提交
149
                                   threshold=None):
Z
zhangjinchao01 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    """
    Classification Error Evaluator. It will print error rate for classification.

    The classification error is:

    ..  math::

        classification\\_error = \\frac{NumOfWrongPredicts}{NumOfAllSamples}

    The simple usage is:

    .. code-block:: python

       eval =  classification_error_evaluator(input=prob,label=lbl)

    :param name: Evaluator name.
    :type name: basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: basestring
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. And will just multiply to NumOfWrongPredicts
                  and NumOfAllSamples. So, the elements of weight are all one,
                  then means not set weight. The larger weight it is, the more
                  important this sample is.
    :type weight: LayerOutput
L
Liang Zhao 已提交
177 178
    :param top_k: number k in top-k error rate
    :type top_k: int
Z
zhangjinchao01 已提交
179 180 181 182 183
    :param threshold: The classification threshold.
    :type threshold: float
    :return: None.
    """

Q
qijun 已提交
184 185 186 187 188 189
    evaluator_base(
        name=name,
        type="classification_error",
        input=input,
        label=label,
        weight=weight,
L
Liang Zhao 已提交
190
        top_k=top_k,
Q
qijun 已提交
191 192
        classification_threshold=threshold, )

Z
zhangjinchao01 已提交
193 194 195 196 197 198 199

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def auc_evaluator(
        input,
        label,
        name=None,
Q
qijun 已提交
200
        weight=None, ):
Z
zhangjinchao01 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    """
    Auc Evaluator which adapts to binary classification.

    The simple usage:

    .. code-block:: python

       eval = auc_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: None|basestring
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1].
    :type weight: LayerOutput
    """
Q
qijun 已提交
220 221 222 223 224 225 226
    evaluator_base(
        name=name,
        type="last-column-auc",
        input=input,
        label=label,
        weight=weight)

Z
zhangjinchao01 已提交
227 228 229 230 231 232 233 234

@evaluator(EvaluatorAttribute.FOR_RANK)
@wrap_name_default()
def pnpair_evaluator(
        input,
        label,
        info,
        name=None,
Q
qijun 已提交
235
        weight=None, ):
Z
zhangjinchao01 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    """
    Positive-negative pair rate Evaluator which adapts to rank task like
    learning to rank. This evaluator must contain at least three layers.

    The simple usage:

    .. code-block:: python

       eval = pnpair_evaluator(input, info, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: LayerOutput
    :param info: Label layer name. (TODO, explaination)
    :type info: LayerOutput
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
Q
qijun 已提交
258 259 260 261 262 263 264 265
    evaluator_base(
        name=name,
        type="pnpair",
        input=input,
        label=label,
        info=info,
        weight=weight)

Z
zhangjinchao01 已提交
266 267 268 269 270 271

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def precision_recall_evaluator(
        input,
        label,
272
        positive_label=None,
Z
zhangjinchao01 已提交
273
        weight=None,
Q
qijun 已提交
274
        name=None, ):
Z
zhangjinchao01 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    """
    An Evaluator to calculate precision and recall, F1-score.
    It is adapt to the task with multiple labels.

    - If positive_label=-1, it will print the average precision, recall,
      F1-score of all labels.

    - If use specify positive_label, it will print the precision, recall,
      F1-score of this label.

    The simple usage:

    .. code-block:: python

       eval = precision_recall_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: LayerOutput
    :param positive_label: The input label layer.
    :type positive_label: LayerOutput.
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
Q
qijun 已提交
303 304 305 306 307 308 309 310
    evaluator_base(
        name=name,
        type="precision_recall",
        input=input,
        label=label,
        positive_label=positive_label,
        weight=weight)

Z
zhangjinchao01 已提交
311 312 313 314 315

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def ctc_error_evaluator(
        input,
316
        label,
Q
qijun 已提交
317
        name=None, ):
Z
zhangjinchao01 已提交
318 319 320 321 322 323 324
    """
    This evaluator is to calculate sequence-to-sequence edit distance.

    The simple usage is :

    .. code-block:: python

325
       eval = ctc_error_evaluator(input=input, label=lbl)
Z
zhangjinchao01 已提交
326 327 328

    :param name: Evaluator name.
    :type name: None|basestring
329
    :param input: Input Layer. Should be the same as the input for ctc_layer.
Z
zhangjinchao01 已提交
330
    :type input: LayerOutput
331 332
    :param label: input label, which is a data_layer. Should be the same as the
                  label for ctc_layer
333
    :type label: LayerOutput
Z
zhangjinchao01 已提交
334
    """
Q
qijun 已提交
335 336 337
    evaluator_base(
        name=name, type="ctc_edit_distance", input=input, label=label)

Z
zhangjinchao01 已提交
338 339 340 341 342

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def chunk_evaluator(
        input,
343 344 345
        label,
        chunk_scheme,
        num_chunk_types,
346 347
        name=None,
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
348 349
    """
    Chunk evaluator is used to evaluate segment labelling accuracy for a
350
    sequence. It calculates precision, recall and F1 scores for the chunk detection.
Z
zhangjinchao01 已提交
351

352 353 354 355 356 357
    To use chunk evaluator, several concepts need to be clarified firstly.
    Chunk type is the type of the whole chunk and a chunk consists of one or several words.  (For example in NER, ORG for organization name, PER for person name etc.)
    Tag indicates the position of a word in a chunk. (B for begin, I for inside, E for end, S for single)
    We can name a label by combining tag type and chunk type. (ie. B-ORG for begining of an organization name)

    The construction of label dict should obey the following rules:
358
    (1) Use one of the listed labelling schemes. These schemes differ in ways indicating chunk boundry.
Z
zhangjinchao01 已提交
359

360
    .. code-block:: python
361 362 363 364 365
     Scheme    Description                                                                                  
      plain    Use the same label for the whole chunk.
      IOB      Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside. 
      IOE      Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
      IOBES    Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk. 
Z
zhangjinchao01 已提交
366
    .. code-block:: python
367 368 369 370 371
   
    To make it clear, let's illustrate by an NER example.
    Assuming that there are three named entity types including ORG, PER and LOC which are called 'chunk type' here,
    if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O,
    in which B-ORG for begining of ORG and I-ORG for inside of ORG.
372 373
    Prefixes which are called 'tag type' here are added to chunk types and there are two tag types including B and I.
    Of course, the training data should be labeled accordingly.
Z
zhangjinchao01 已提交
374

375 376 377
    (2) Mapping is done correctly by the listed equations and assigning protocol.

    The following table are equations to extract tag type and chunk type from a label.
Z
zhangjinchao01 已提交
378

379 380 381 382
    .. code-block:: python
    tagType = label % numTagType
    chunkType = label / numTagType
    otherChunkType = numChunkTypes
Z
zhangjinchao01 已提交
383
    .. code-block:: python
384 385
    
    The following table shows the mapping rule between tagType and tag type in each scheme.
Z
zhangjinchao01 已提交
386

387 388 389 390 391 392 393 394 395
    .. code-block:: python
     Scheme Begin Inside End   Single
      plain  0     -      -     -
      IOB    0     1      -     -
      IOE    -     0      1     -
      IOBES  0     1      2     3
    .. code-block:: python

    Continue the NER example, and the label dict should look like this to satify above equations:
396 397 398 399 400 401

    .. code-block:: python
      B-ORG  0
      I-ORG  1
      B-PER  2
      I-PER  3
402 403 404
      B-LOC  4
      I-LOC  5
      O      6
405
    .. code-block:: python
Z
zhangjinchao01 已提交
406

407 408 409 410 411
    In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is
    "IOB" so tagType has two values: 0 for B and 1 for I. 
    Here we will use I-LOC to explain the above mapping rules in detail.
    For I-LOC, the label id is 5, so we can get tagType=1 and ChunkType=2, which means I-LOC is a part of NER chunk LOC
    and the tag is I.
Z
zhangjinchao01 已提交
412 413 414 415 416

    The simple usage is:

    .. code-block:: python

417
       eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types)
Z
zhangjinchao01 已提交
418

419 420
    .. code-block:: python
    
Z
zhangjinchao01 已提交
421 422
    :param input: The input layers.
    :type input: LayerOutput
423 424
    :param label: An input layer containing the ground truth label.
    :type label: LayerOutput
Z
zhangjinchao01 已提交
425
    :param chunk_scheme: The labelling schemes support 4 types. It is one of
426
                         "IOB", "IOE", "IOBES", "plain". It is required.
Z
zhangjinchao01 已提交
427 428
    :type chunk_scheme: basestring
    :param num_chunk_types: number of chunk types other than "other"
429 430
    :param name: The Evaluator name, it is optional.
    :type name: basename|None
431
    :param excluded_chunk_types: chunks of these types are not considered
P
Peng Li 已提交
432
    :type excluded_chunk_types: list of integer|None
Z
zhangjinchao01 已提交
433
    """
Q
qijun 已提交
434 435 436 437
    evaluator_base(
        name=name,
        type="chunk",
        input=input,
438
        label=label,
Q
qijun 已提交
439
        chunk_scheme=chunk_scheme,
440 441
        num_chunk_types=num_chunk_types,
        excluded_chunk_types=excluded_chunk_types, )
Q
qijun 已提交
442

Z
zhangjinchao01 已提交
443 444 445 446 447 448

@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def sum_evaluator(
        input,
        name=None,
Q
qijun 已提交
449
        weight=None, ):
Z
zhangjinchao01 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    """
    An Evaluator to sum the result of input.

    The simple usage:

    .. code-block:: python

       eval = sum_evaluator(input)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name.
    :type input: LayerOutput
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
Q
qijun 已提交
467 468
    evaluator_base(name=name, type="sum", input=input, weight=weight)

Z
zhangjinchao01 已提交
469 470 471 472 473 474

@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def column_sum_evaluator(
        input,
        name=None,
Q
qijun 已提交
475
        weight=None, ):
Z
zhangjinchao01 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489
    """
    This Evaluator is used to sum the last column of input.

    The simple usage is:

    .. code-block:: python

       eval = column_sum_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name.
    :type input: LayerOutput
    """
Q
qijun 已提交
490 491 492
    evaluator_base(
        name=name, type="last-column-sum", input=input, weight=weight)

Z
zhangjinchao01 已提交
493 494 495 496 497 498

"""
The following are printer Evaluators which are usually used to
print the result, like value or gradient of input layers, the
results generated in machine translation, the classification error etc.
"""
Q
qijun 已提交
499 500


Z
zhangjinchao01 已提交
501 502 503 504
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def value_printer_evaluator(
        input,
Q
qijun 已提交
505
        name=None, ):
Z
zhangjinchao01 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    """
    This Evaluator is used to print the values of input layers. It contains
    one or more input layers.

    The simple usage is:

    .. code-block:: python

       eval = value_printer_evaluator(input)

    :param input: One or more input layers.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
521 522
    evaluator_base(name=name, type="value_printer", input=input)

Z
zhangjinchao01 已提交
523 524 525 526 527

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def gradient_printer_evaluator(
        input,
Q
qijun 已提交
528
        name=None, ):
Z
zhangjinchao01 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    """
    This Evaluator is used to print the gradient of input layers. It contains
    one or more input layers.

    The simple usage is:

    .. code-block:: python

       eval = gradient_printer_evaluator(input)

    :param input: One or more input layers.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
544 545
    evaluator_base(name=name, type="gradient_printer", input=input)

L
Liang Zhao 已提交
546

Z
zhangjinchao01 已提交
547 548 549 550
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxid_printer_evaluator(
        input,
551
        num_results=None,
Q
qijun 已提交
552
        name=None, ):
Z
zhangjinchao01 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    """
    This Evaluator is used to print maximum top k values and their indexes
    of each row of input layers. It contains one or more input layers.
    k is specified by num_results.

    The simple usage is:

    .. code-block:: python

       eval = maxid_printer_evaluator(input)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param num_results: This number is used to specify the top k numbers.
                        It is 1 by default.
    :type num_results: int.
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
572 573 574
    evaluator_base(
        name=name, type="max_id_printer", input=input, num_results=num_results)

Z
zhangjinchao01 已提交
575 576 577 578 579

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxframe_printer_evaluator(
        input,
580
        num_results=None,
Q
qijun 已提交
581
        name=None, ):
Z
zhangjinchao01 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    """
    This Evaluator is used to print the top k frames of each input layers.
    The input layers should contain sequences info or sequences type.
    k is specified by num_results.
    It contains one or more input layers.

    Note:
        The width of each frame is 1.

    The simple usage is:

    .. code-block:: python

       eval = maxframe_printer_evaluator(input)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
602 603 604 605 606 607
    evaluator_base(
        name=name,
        type="max_frame_printer",
        input=input,
        num_results=num_results)

Z
zhangjinchao01 已提交
608 609 610 611 612

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def seqtext_printer_evaluator(
        input,
613
        result_file,
614
        id_input=None,
615 616
        dict_file=None,
        delimited=None,
Q
qijun 已提交
617
        name=None, ):
Z
zhangjinchao01 已提交
618 619 620 621
    """
    Sequence text printer will print text according to index matrix and a
    dictionary. There can be multiple input to this layer:

622
    1. If there is no id_input, the input must be a matrix containing
Z
zhangjinchao01 已提交
623 624
    the sequence of indices;

625
    2. If there is id_input, it should be ids, and interpreted as sample ids.
Z
zhangjinchao01 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

    The output format will be:

    1. sequence without sub-sequence, and there is probability.

    .. code-block:: python

         id \t prob space_seperated_tokens_from_dictionary_according_to_seq

    2. sequence without sub-sequence, and there is not probability.

    .. code-block:: python

         id \t space_seperated_tokens_from_dictionary_according_to_seq

    3. sequence with sub-sequence, and there is not probability.

    .. code-block:: python

         id \t space_seperated_tokens_from_dictionary_according_to_sub_seq
         \t \t space_seperated_tokens_from_dictionary_according_to_sub_seq
         ...

    Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup
    with maxid (when generating) as an input.

    The simple usage is:

    .. code-block:: python

656 657
       eval = seqtext_printer_evaluator(input=maxid_layer,
                                        id_input=sample_id,
Z
zhangjinchao01 已提交
658 659 660 661 662
                                        dict_file=dict_file,
                                        result_file=result_file)

    :param input: Input Layer name.
    :type input: LayerOutput|list
663
    :param result_file: Path of the file to store the generated results.
Z
zhangjinchao01 已提交
664
    :type result_file: basestring
665 666 667 668 669 670 671 672 673 674
    :param id_input: Index of the input sequence, and the specified index will
                     be prited in the gereated results. This an optional
                     parameter.
    :type id_input: LayerOutput
    :param dict_file: Path of dictionary. This is an optional parameter.
                      Every line is a word in the dictionary with
                      (line number - 1) as the word index.
                      If this parameter is set to None, or to an empty string,
                      only word index are printed in the generated results.
    :type dict_file: basestring
Z
zhangjinchao01 已提交
675 676 677 678 679
    :param delimited: Whether to use space to separate output tokens.
                Default is True. No space is added if set to False.
    :type delimited: bool
    :param name: Evaluator name.
    :type name: None|basestring
680 681
    :return: The seq_text_printer that prints the generated sequence to a file.
    :rtype: evaluator
Z
zhangjinchao01 已提交
682
    """
683
    assert isinstance(result_file, basestring)
684 685 686 687 688 689
    if id_input is None:
        inputs = [input]
    else:
        inputs = [id_input, input]
        input.parents.append(id_input)

Q
qijun 已提交
690 691 692 693 694 695 696 697
    evaluator_base(
        name=name,
        type="seq_text_printer",
        input=inputs,
        dict_file=dict_file,
        result_file=result_file,
        delimited=delimited)

Z
zhangjinchao01 已提交
698 699 700 701 702 703 704

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def classification_error_printer_evaluator(
        input,
        label,
        threshold=0.5,
Q
qijun 已提交
705
        name=None, ):
Z
zhangjinchao01 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
    """
    This Evaluator is used to print the classification error of each sample.

    The simple usage is:

    .. code-block:: python

       eval = classification_error_printer_evaluator(input)

    :param input: Input layer.
    :type input: LayerOutput
    :param label: Input label layer.
    :type label: LayerOutput
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
722 723 724 725 726 727
    evaluator_base(
        name=name,
        type="classification_error_printer",
        input=input,
        label=label,
        classification_threshold=threshold)