MKLDNNLayer.h 9.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "Layer.h"
19
#include "MKLDNNBase.h"
T
tensor-tang 已提交
20
#include "mkldnn.hpp"
T
tensor-tang 已提交
21
#include "paddle/math/MKLDNNMatrix.h"
22
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DECLARE_bool(use_mkldnn);

T
tensor-tang 已提交
26 27
namespace paddle {

28 29
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
T
tensor-tang 已提交
30 31

/**
32
 * @brief Base class of MKLDNNlayer.
T
tensor-tang 已提交
33 34
 *
 */
35
class MKLDNNLayer : public Layer {
T
tensor-tang 已提交
36
protected:
37 38
  // input value element count
  size_t inputElemenCnt_;
T
tensor-tang 已提交
39 40 41 42 43 44 45
  // batch size
  int bs_;
  // input image channel, height and width
  int ic_, ih_, iw_;
  // output image channel, height and width
  int oc_, oh_, ow_;

T
tensor-tang 已提交
46 47 48
  // backward also need reset after reset forward handle
  bool needResetBwd_;

T
tensor-tang 已提交
49 50
  // mkldnn engine, stream and primivtives
  mkldnn::engine engine_;
51
  std::shared_ptr<MKLDNNStream> stream_;
T
tensor-tang 已提交
52
  std::shared_ptr<mkldnn::primitive> fwd_;
T
tensor-tang 已提交
53 54
  std::shared_ptr<mkldnn::primitive> bwdWgt_;
  std::shared_ptr<mkldnn::primitive> bwdData_;
T
tensor-tang 已提交
55 56 57
  std::vector<mkldnn::primitive> pipelineFwd_;
  std::vector<mkldnn::primitive> pipelineBwd_;

58
  // MKLDNNMatrixPtr with internal format
T
tensor-tang 已提交
59
  MKLDNNMatrixPtr inVal_;
T
tensor-tang 已提交
60
  MKLDNNMatrixPtr inGrad_;
T
tensor-tang 已提交
61
  MKLDNNMatrixPtr outVal_;
T
tensor-tang 已提交
62
  MKLDNNMatrixPtr outGrad_;
T
tensor-tang 已提交
63
  MKLDNNMatrixPtr wgtVal_;
T
tensor-tang 已提交
64
  MKLDNNMatrixPtr wgtGrad_;
T
tensor-tang 已提交
65
  MKLDNNMatrixPtr biasVal_;
T
tensor-tang 已提交
66
  MKLDNNMatrixPtr biasGrad_;
T
tensor-tang 已提交
67

T
tensor-tang 已提交
68
public:
69
  explicit MKLDNNLayer(const LayerConfig& config)
T
tensor-tang 已提交
70
      : Layer(config),
71
        inputElemenCnt_(0),
T
tensor-tang 已提交
72 73 74 75 76 77 78
        bs_(0),
        ic_(0),
        ih_(0),
        iw_(0),
        oc_(0),
        oh_(0),
        ow_(0),
T
tensor-tang 已提交
79
        needResetBwd_(true),
T
tensor-tang 已提交
80
        engine_(mkldnn::engine::cpu, 0),
T
tensor-tang 已提交
81 82 83 84
        stream_(nullptr),
        fwd_(nullptr),
        bwdWgt_(nullptr),
        bwdData_(nullptr) {}
T
tensor-tang 已提交
85

86
  ~MKLDNNLayer() {}
T
tensor-tang 已提交
87

T
tensor-tang 已提交
88 89
  virtual bool init(const LayerMap& layerMap,
                    const ParameterMap& parameterMap) {
T
tensor-tang 已提交
90 91 92
    CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
                            << "Please set WITH_MKLDNN=ON "
                            << "and set use_mkldnn=True";
T
refine  
tensor-tang 已提交
93
    CHECK(!useGpu_) << "Do not support GPU yet";
T
tensor-tang 已提交
94 95 96 97 98

    // set device id before Layer::init
    setDevice(MKLDNN_DEVICE);
    // change param device to MKLDNN device
    setParamsDevice(MKLDNN_DEVICE, parameterMap);
T
tensor-tang 已提交
99 100 101
    if (!Layer::init(layerMap, parameterMap)) {
      return false;
    }
102
    checkCPUOutputsNumber();
T
tensor-tang 已提交
103

104 105
    stream_.reset(new MKLDNNStream());
    engine_ = CPUEngine::Instance().getEngine();
T
tensor-tang 已提交
106 107
    return true;
  }
T
tensor-tang 已提交
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  void forward(PassType passType) override {
    passType_ = passType;

    {
      REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
      copySeqInfoToOutputs();
      CHECK(!inputLayers_.empty());
      size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt();
      if (inputElemenCnt_ != elemenCnt) {
        inputElemenCnt_ = elemenCnt;
        reshape();
        resetFwd();
        convertWeightsFromPaddle();
        needResetBwd_ = true;
      }

      if (inputLayers_[0]->getType() == "data") {
        updateInputData();
      }

      stream_->submit(pipelineFwd_);
    }

    /* activation */ {
      REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
      forwardActivation();
    }
  }

  void backward(const UpdateCallback& callback) override {
    /* Do derivation */ {
      REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
      backwardActivation();
    }

    {
      REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
      if (needResetBwd_) {
        resetBwd();
        needResetBwd_ = false;
      }

      stream_->submit(pipelineBwd_);
    }

    {
      REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
      updateWeights(callback);
    }
  }

  /**
   * reshape the input image sizes
   * and reset output image and buffer size
   */
  virtual void reshape() = 0;

  /**
   * reset the mkldnn forward primitve and memory
   * only would be called when input size changes
   */
  virtual void resetFwd() = 0;

  /**
   * reset the mkldnn backward primitve and memory for mkldnn fc
   * only would be called when needed
   */
  virtual void resetBwd() = 0;

  /**
   * Update input value data when input layer is "data" type.
   * Since the input value data address might be changed.
   */
  virtual void updateInputData() {}

  /**
   * Update weights and biases if necessary.
   */
  virtual void updateWeights(const UpdateCallback& callback) {}

T
tensor-tang 已提交
189 190 191 192
  /**
   * convert weight from paddle format to mkldnn format
   * weight_ will be override
   */
193
  virtual void convertWeightsFromPaddle() {}
T
tensor-tang 已提交
194 195 196 197 198

  /**
   * convert mkldnn weight to paddle format
   * weight_ will be override
   */
199
  virtual void convertWeightsToPaddle() {}
T
tensor-tang 已提交
200

201
  /**
202
   * add this interface as public for unit test
203
   */
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }

protected:
  /**
   * reshape the input image sizes and input batchsize
   */
  virtual void reshapeInput() {
    const Argument& input = inputLayers_[0]->getOutput();
    bs_ = input.getBatchSize();
    int height = input.getFrameHeight();
    int width = input.getFrameWidth();
    if (height != 0) {
      ih_ = height;
    }
    if (width != 0) {
      iw_ = width;
    }
  }

  /**
   * reshape output image sizes
   */
  virtual void reshapeOutput(size_t height, size_t width) {
    output_.setFrameHeight(height);
    output_.setFrameWidth(width);
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].setFrameHeight(height);
      outputOtherDevice_[i].setFrameWidth(width);
    }
  }
234

T
tensor-tang 已提交
235 236 237 238 239 240 241 242
  /**
   * print info about sizes
   */
  virtual void printSizeInfo() {
    VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
                       << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
                       << ", oh: " << oh_ << ", ow: " << ow_;
  }
T
tensor-tang 已提交
243

244 245 246 247 248
  /**
   * Print the mkldnn memory format flow of value
   */
  virtual void printValueFormatFlow() {
    if (inVal_ && outVal_) {
249 250
      VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> "
                        << outVal_->getFormat();
251
    }
T
tensor-tang 已提交
252
  }
T
tensor-tang 已提交
253

254 255 256 257 258
  /**
   * Print the mkldnn memory format flow of grad
   */
  virtual void printGradFormatFlow() {
    if (inGrad_ && outGrad_) {
259 260
      VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< "
                        << outGrad_->getFormat();
261
    }
T
tensor-tang 已提交
262 263 264
  }

protected:
265
  /**
T
rename  
tensor-tang 已提交
266
   * If input only has MKLDNN device.
T
refine  
tensor-tang 已提交
267
   * Otherwise, only support the previous layer using CPU device.
268
   */
T
rename  
tensor-tang 已提交
269
  bool inputIsOnlyMKLDNN(int index = 0) {
270 271 272 273 274 275 276 277 278 279
    int prevDevice = getPrev(index)->getDeviceId();
    if (prevDevice == MKLDNN_DEVICE) {
      return true;
    } else {
      // do not support GPU yet
      CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
      return false;
    }
  }

T
refine  
tensor-tang 已提交
280 281 282 283
  /**
   * If output only has MKLDNN device.
   * Otherwise, other devices should only using CPU device.
   */
T
rename  
tensor-tang 已提交
284
  bool outputIsOnlyMKLDNN() {
T
refine  
tensor-tang 已提交
285 286 287 288 289 290 291
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
          << "Only support other device is CPU yet";
    }
    return outputOtherDevice_.size() == 0;
  }

T
tensor-tang 已提交
292 293 294 295 296
  /**
   * Set deviceId of this layer.
   */
  void setDevice(int id) { deviceId_ = id; }

297
private:
T
tensor-tang 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  /**
   * Set deviceId of the params used in this layer.
   */
  void setParamsDevice(int id, const ParameterMap& parameterMap) {
    for (auto& inputConfig : config_.inputs()) {
      if (inputConfig.has_input_parameter_name()) {
        ParameterPtr parameter;
        std::string name = inputConfig.input_parameter_name();
        CHECK(mapGet(name, parameterMap, &parameter))
            << "Cannot find input parameter " << name << " for layer "
            << getName();
        parameter->setDevice(id);
      }
    }
    if (config_.has_bias_parameter_name()) {
      ParameterPtr parameter;
      std::string name = config_.bias_parameter_name();
      CHECK(mapGet(name, parameterMap, &parameter))
          << "Cannot find bias parameter " << name << " for layer "
          << getName();
      parameter->setDevice(id);
    }
T
tensor-tang 已提交
320
  }
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

  /**
   * Check the cpu device number of outputOtherDevice_.
   * should have only one at most.
   */
  void checkCPUOutputsNumber(int max = 1) {
    int cnt = 0;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        ++cnt;
      }
    }
    CHECK_LE(cnt, max) << "too much CPU devies";
  }

  /**
   * copy SeqInfo from input layer to this output and other output devices.
   * @note: do not use getInput(0) since it used this deviceId_,
   *        use "inputLayers_[0]->getOutput()" instead.
   */
  void copySeqInfoToOutputs() {
    if (inputLayers_.empty() || !needSequenceInfo_) {
      return;
    }
    const Argument& input = inputLayers_[0]->getOutput();
    output_.sequenceStartPositions = input.sequenceStartPositions;
    output_.subSequenceStartPositions = input.subSequenceStartPositions;
    output_.cpuSequenceDims = input.cpuSequenceDims;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].sequenceStartPositions =
          output_.sequenceStartPositions;
      outputOtherDevice_[i].subSequenceStartPositions =
          output_.subSequenceStartPositions;
      outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
    }
  }
T
tensor-tang 已提交
357 358 359
};

}  // namespace paddle