elementwise_mkldnn_op.h 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <string>
17 18 19
#include <unordered_map>

#include "paddle/fluid/framework/data_layout_transform.h"
20 21
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
22 23 24 25 26
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

27 28 29
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
using framework::DataLayout;
using framework::Tensor;

inline std::vector<int64_t> CalculateBroadcastedDims(const Tensor* x,
                                                     const Tensor* y) {
  const auto src_tz = phi::vectorize(x->dims());
  const auto dst_tz = phi::vectorize(y->dims());

  size_t j = 0;
  std::vector<int64_t> dst_tz_ex(src_tz.size(), 1);
  for (size_t i = 0; i < src_tz.size(); ++i) {
    dst_tz_ex[i] = (src_tz[i] != dst_tz[j]) ? 1 : dst_tz[j++];
    if (j == dst_tz.size()) break;
  }

  return dst_tz_ex;
}
47 48 49

template <typename T, dnnl::algorithm BINARY_OP>
class EltwiseMKLDNNKernel : public framework::OpKernel<T> {
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 private:
  dnnl::post_ops get_post_ops(const framework::ExecutionContext& ctx) const {
    dnnl::post_ops post_operations;
    if (ctx.HasAttr("activation_type")) {
      const float scale = ctx.HasAttr("activation_scale")
                              ? ctx.Attr<float>("activation_scale")
                              : 1.0f;
      const float alpha = ctx.HasAttr("activation_alpha")
                              ? ctx.Attr<float>("activation_alpha")
                              : 0.0f;
      const float beta = ctx.HasAttr("activation_beta")
                             ? ctx.Attr<float>("activation_beta")
                             : 0.0f;

64 65
      const auto activation_algorithm = platform::AcquireActivationAlgorithm(
          ctx.Attr<std::string>("activation_type"));
66

67
      post_operations.append_eltwise(scale, activation_algorithm, alpha, beta);
68 69 70 71
    }
    return post_operations;
  }

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
    const auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");

    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    float scale_o = ctx.Attr<float>("Scale_out");
    int axis = ctx.Attr<int>("axis");

87 88 89 90 91 92 93 94 95 96 97
    platform::BinaryMKLDNNHandler<T> handler(BINARY_OP,
                                             axis,
                                             mkldnn_engine,
                                             ctx.GetPlace(),
                                             x,
                                             y,
                                             z,
                                             scale_x,
                                             scale_y,
                                             scale_o,
                                             get_post_ops(ctx));
98 99 100

    const auto src_x_memory = handler.AcquireSrcMemory(x);
    const auto src_y_memory = handler.AcquireSecondSrcMemory(y);
101 102 103 104 105 106 107 108 109
    // (jczaja) For Inplace src and dst should be the same memory object.
    // So x should share buffer with z. But UT mechanics is testing inplace
    // execution for this op not checking that x can be bradcasted to match in
    // shape y tensor.
    // This is wrong as when x is to be broadcasted then z(out) will match the
    // shape of y which is bigger than x. Hence if x is smaller in shape than z
    // and they share a buffer (of
    // shape x) then this buffer is not big enough to hold result of elementwise
    // operation.
110 111
    const bool reuse_x_memopry =
        x->numel() == z->numel() && x->IsSharedBufferWith(*z);
112
    std::shared_ptr<dnnl::memory> dst_memory;
113 114 115 116 117 118 119 120 121 122 123 124 125
    if (reuse_x_memopry) {
      dst_memory = src_x_memory;
      // NOTE(chenfeiyu): when the output reuses memory from other tensor rather
      // than allocate its own, it's still need to take care of its data type.
      // Unfortunately, paddle's operator only infers the output' shape, but not
      // the data type. mutable_data<T> takes care of allocation and data type
      // normally, but if the memory is already allocated and there is no need
      // to re-allocate, it just set the data type. So this it added there to
      // get the right data type.
      z->mutable_data<T>(ctx.GetPlace());
    } else {
      dst_memory = handler.AcquireDstMemory(z);
    }
126 127 128

    const auto binary_prim = handler.AcquireForwardPrimitive();

129
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
130 131 132 133 134 135 136 137 138

    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC_0, *src_x_memory},
        {DNNL_ARG_SRC_1, *src_y_memory},
        {DNNL_ARG_DST, *dst_memory}};

    binary_prim->execute(astream, args);
    astream.wait();

139
    z->set_mem_desc(dst_memory->get_desc());
140 141
  }
};
142

143 144 145 146 147 148
template <typename T, dnnl::algorithm BINARY_OP>
class EltwiseMKLDNNGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;
149

150 151 152
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    int axis = ctx.Attr<int>("axis");

    auto tz = phi::vectorize<int64_t>(dout->dims());
    auto proto_type_dout = framework::TransToProtoVarType(dout->dtype());

    platform::ReorderMKLDNNHandler reorder_handler(
168 169 170
        tz,
        proto_type_dout,
        framework::ToMKLDNNDataType(proto_type_dout),
171 172 173
        onednn_engine);

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
174
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
175 176 177 178 179 180 181 182 183

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    if (dx) {
      std::shared_ptr<dnnl::memory> dst_memory;

      // elementwise_add & elementwise_sub
      if (BINARY_OP == dnnl::algorithm::binary_add ||
          BINARY_OP == dnnl::algorithm::binary_sub) {
184 185
        dst_memory = reorder_handler.AcquireDstMemory(
            dx, dout->mem_desc(), ctx.GetPlace());
186 187 188
        auto reorder_p =
            reorder_handler.AcquireReorder(dst_memory, reorder_src_memory_p);
        platform::RecordEvent record_reorder(
189 190 191
            "int_reorder",
            platform::TracerEventType::UserDefined,
            2,
192 193 194
            platform::EventRole::kUniqueOp);

        reorder_p->execute(astream, *reorder_src_memory_p, *dst_memory);
195
      } else {  // elementwise_mul & elementwise_div
196 197 198 199 200 201 202 203 204 205
        platform::BinaryMKLDNNHandler<T> binary_handler(BINARY_OP,
                                                        axis,
                                                        onednn_engine,
                                                        ctx.GetPlace(),
                                                        dout,
                                                        y,
                                                        dx,
                                                        1.0f,
                                                        1.0f,
                                                        1.0f);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

        const auto src_dout_memory = binary_handler.AcquireSrcMemory(dout);
        const auto src_y_memory = binary_handler.AcquireSecondSrcMemory(y);
        dst_memory = binary_handler.AcquireDstMemory(dx);

        const auto binary_prim = binary_handler.AcquireForwardPrimitive();

        const std::unordered_map<int, dnnl::memory> args = {
            {DNNL_ARG_SRC_0, *src_dout_memory},
            {DNNL_ARG_SRC_1, *src_y_memory},
            {DNNL_ARG_DST, *dst_memory}};

        binary_prim->execute(astream, args);
      }
      astream.wait();

222
      dx->set_mem_desc(dst_memory->get_desc());
223 224 225 226 227 228 229 230 231 232 233 234
    }

    if (dy) {
      dnnl::primitive_attr broadcast_reduction_attr;
      std::shared_ptr<dnnl::memory> broadcast_src_memory;
      std::shared_ptr<dnnl::memory> dst_memory;

      // elementwise_add & elementwise_sub
      if (BINARY_OP == dnnl::algorithm::binary_add ||
          BINARY_OP == dnnl::algorithm::binary_sub) {
        if (dout->dims() == dy->dims()) {
          auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
235
              dy, dout->mem_desc(), ctx.GetPlace());
236 237 238 239 240 241 242 243

          dnnl::primitive_attr reorder_attr;
          std::vector<float> scales(1);
          scales[0] = (BINARY_OP == dnnl::algorithm::binary_add) ? 1 : -1;
          reorder_attr.set_output_scales(0, scales);
          auto reorder_p = std::make_shared<dnnl::reorder>(
              *(reorder_src_memory_p), *(reorder_dst_memory_p), reorder_attr);
          platform::RecordEvent record_reorder(
244 245 246
              "int_reorder",
              platform::TracerEventType::UserDefined,
              2,
247
              platform::EventRole::kUniqueOp);
248 249
          reorder_p->execute(
              astream, *reorder_src_memory_p, *reorder_dst_memory_p);
250 251 252 253 254

          dst_memory = reorder_dst_memory_p;
        } else {
          broadcast_src_memory = reorder_src_memory_p;
        }
255
      } else {  // elementwise_mul & elementwise_div
256 257 258 259 260 261 262
        std::unordered_map<int, dnnl::memory> args;
        std::shared_ptr<dnnl::binary> binary_prim;
        std::shared_ptr<dnnl::memory> post_op_memory;
        std::shared_ptr<dnnl::memory> src_0_memory;
        std::shared_ptr<dnnl::memory> src_1_memory;

        platform::BinaryMKLDNNHandler<T> binary_handler(
263 264 265 266 267 268 269 270 271 272
            dnnl::algorithm::binary_mul,
            axis,
            onednn_engine,
            ctx.GetPlace(),
            dout,
            x,
            nullptr,
            1.0f,
            1.0f,
            1.0f);
273 274 275 276 277

        src_1_memory = binary_handler.AcquireSecondSrcMemory(x);

        if (BINARY_OP == dnnl::algorithm::binary_div) {
          platform::BinaryMKLDNNHandler<T> post_op_binary_handler(
278 279 280 281 282 283 284 285 286 287
              dnnl::algorithm::binary_div,
              axis,
              onednn_engine,
              ctx.GetPlace(),
              y,
              y,
              nullptr,
              1.0f,
              1.0f,
              1.0f);
288 289 290 291 292 293 294

          post_op_memory = post_op_binary_handler.AcquireSrcMemory(y);

          dnnl::post_ops po;
          po.append_binary(dnnl::algorithm::binary_div,
                           post_op_memory->get_desc());

295 296 297 298 299 300 301 302 303 304 305 306
          binary_handler =
              platform::BinaryMKLDNNHandler<T>(dnnl::algorithm::binary_mul,
                                               axis,
                                               onednn_engine,
                                               ctx.GetPlace(),
                                               dout,
                                               out,
                                               nullptr,
                                               -1.0f,
                                               1.0f,
                                               1.0f,
                                               po);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

          src_1_memory = binary_handler.AcquireSecondSrcMemory(out);
        }

        src_0_memory = binary_handler.AcquireSrcMemory(dout);

        const auto dst_dy_memory = (dout->dims() == dy->dims())
                                       ? binary_handler.AcquireDstMemory(dy)
                                       : binary_handler.AcquireDstMemory();

        binary_prim = binary_handler.AcquireForwardPrimitive();
        args = {{DNNL_ARG_SRC_0, *src_0_memory},
                {DNNL_ARG_SRC_1, *src_1_memory},
                {DNNL_ARG_DST, *dst_dy_memory}};

        if (BINARY_OP == dnnl::algorithm::binary_div)
          args.insert({DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
                       *post_op_memory});

        binary_prim->execute(astream, args);
        broadcast_src_memory = dst_dy_memory;
        dst_memory = dst_dy_memory;
      }
      astream.wait();

      if (dout->dims() != dy->dims()) {
        // Broadcasting
        if (BINARY_OP == dnnl::algorithm::binary_sub) {
          dnnl::post_ops po;
          po.append_eltwise(1.0f, dnnl::algorithm::eltwise_linear, -1.0f, 0);
          broadcast_reduction_attr.set_post_ops(po);
        }

        platform::ReductionMKLDNNHandler<T> reduction_handler(
341 342 343 344 345 346 347 348
            dnnl::algorithm::reduction_sum,
            0.0f,
            0.0f,
            onednn_engine,
            ctx.GetPlace(),
            dout,
            dy,
            CalculateBroadcastedDims(dout, dy),
349 350 351 352 353
            broadcast_reduction_attr);
        dst_memory = reduction_handler.AcquireDstMemory(dy);

        auto reduction_p = reduction_handler.AcquireForwardPrimitive();

354 355 356 357 358
        reduction_p->execute(astream,
                             {
                                 {DNNL_ARG_SRC, *broadcast_src_memory},
                                 {DNNL_ARG_DST, *dst_memory},
                             });
359
        astream.wait();
360 361
        dy->set_mem_desc(dst_memory->get_desc().reshape(
            phi::vectorize<int64_t>(dy->dims())));
362
      } else {
363
        dy->set_mem_desc(dst_memory->get_desc());
364 365 366 367
      }
    }
  }
};
368 369
}  // namespace operators
}  // namespace paddle