expand_op.cc 4.0 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/expand_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X must be initialized.");
    std::vector<int> expand_times = Attr<std::vector<int>>("expandTimes");
    auto* x = ctx.Input<Tensor>("X");
    auto x_dims = x->dims();

    PADDLE_ENFORCE_EQ(static_cast<size_t>(framework::arity(x_dims)),
                      expand_times.size(),
                      "Number of attribute (expandTimes) value must be equal "
                      "to rank of X.");
    PADDLE_ENFORCE_LE(framework::arity(x_dims), 6,
                      "Rank of X must not be greater than 6.");

    std::vector<int64_t> out_shape(x_dims.size());
    for (size_t i = 0; i < expand_times.size(); ++i) {
      PADDLE_ENFORCE_GE(expand_times[i], 1,
                        "Each value of expand times should not be "
                        "less than 1.");
      out_shape[i] = x_dims[i] * expand_times[i];
    }
    auto* out = ctx.Output<Tensor>("Out");
    out->Resize(framework::make_ddim(out_shape));
  }
};

class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ExpandOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input tensor.");
    AddOutput("Out", "Expanded result by tiling input X.");
    AddAttr<std::vector<int>>("expandTimes",
                              "Expand times for each dimension.");
    AddComment(R"DOC(
Y
yangyaming 已提交
61 62 63 64
Expand operator tiles the input by given times number. You should set times
number for each dimension by providing attribute 'expandTimes'. Rank of input
tensor should be in [1, 6]. Please draw an attention that size of
'expandTimes' must be same with rank of input tensor.
Y
yangyaming 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
)DOC");
  }
};

class ExpandGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X must be initialized.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null.");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    std::vector<int> expand_times = Attr<std::vector<int>>("expandTimes");
    auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
    auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    for (size_t i = 0; i < expand_times.size(); ++i) {
      PADDLE_ENFORCE_EQ(x_dims[i] * expand_times[i], out_dims[i],
                        "Size of each dimension of Input(Out@GRAD) should be "
                        "equal to multiplication of crroresponding sizes of "
                        "Input(X) and expandTimes.");
    }

    if (x_grad) x_grad->Resize(x_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(expand, ops::ExpandOp, ops::ExpandOpMaker, expand_grad,
            ops::ExpandGradOp);
REGISTER_OP_CPU_KERNEL(expand,
                       ops::ExpandKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    expand_grad, ops::ExpandGradKernel<paddle::platform::CPUPlace, float>);