jit_kernel_lstm.cc 4.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17 18 19 20 21 22
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"

#ifdef __AVX__
#include <immintrin.h>
#endif
T
tensor-tang 已提交
23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

namespace jit = platform::jit;

T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* LSTM JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class LSTMKernelImpl : public LSTMKernel<T> {
 public:
  explicit LSTMKernelImpl(int d, const std::string& act_gate,
                          const std::string& act_cand,
                          const std::string& act_cell)
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
    auto GetActKernel = [&](const std::string& type,
                            int n) -> std::shared_ptr<const VActKernel<T>> {
      if (type == "sigmoid") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VSigmoidKernel<T>>(n));
      } else if (type == "relu") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VReluKernel<T>>(n));
      } else if (type == "tanh") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VTanhKernel<T>>(n));
      } else if (type == "identity" || type == "") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VIdentityKernel<T>>(n));
      }
      PADDLE_THROW("Not support type: %s", type);
    };
    act_gate_3d_ = GetActKernel(act_gate, d * 3);
    act_cand_d_ = GetActKernel(act_cand, d);
    act_cell_d_ = GetActKernel(act_cell, d);
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
  }

  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht) const override {
    // gates: W_ch, W_ih, W_fh, W_oh
    act_gate_3d_->Compute(gates + d_, gates + d_);

    /* C_t = C_t-1 * fgated + cand_gated * igated */
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);

    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
T
tensor-tang 已提交
79
  }
T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

 private:
  int d_, d2_, d3_;
  std::shared_ptr<const VActKernel<T>> act_gate_3d_, act_cand_d_, act_cell_d_;
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
  std::shared_ptr<const VAddKernel<T>> vadd_d_;
};

#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype)                   \
  template <>                                                          \
  std::shared_ptr<const ker_class<ker_dtype>>                          \
  KernelPool::Get<ker_class<ker_dtype>, int, const std::string&,       \
                  const std::string&, const std::string&>(             \
      int d, const std::string& act_gate, const std::string& act_cand, \
      const std::string& act_cell)

#define JITKERNEL_KEY_LSTM(ker_key, dtype_key) \
  #ker_key #dtype_key + std::to_string(d) + act_gate + act_cand + act_cell

#define JITKERNEL_NEW_LSTM_IMPL(ker, dtype, isa, k)                     \
  p = std::dynamic_pointer_cast<ker<dtype>>(                            \
      std::make_shared<ker##Impl<dtype, isa, k>>(d, act_gate, act_cand, \
                                                 act_cell))

REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
                        JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);

#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
T
tensor-tang 已提交
110 111 112 113 114

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle