elementwise_op_plugin.cu 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

namespace details {
template <typename T>
struct Add {
26
  __device__ T operator()(const T &a, const T &b) const { return a + b; }
27 28 29 30
};

template <typename T>
struct Mul {
31
  __device__ T operator()(const T &a, const T &b) const { return a * b; }
32
};
33
}  // namespace details
34 35

template <typename T, typename Operator>
36 37 38 39 40 41 42 43 44 45 46
__global__ void elementwise_kernel(const size_t total, const T *x_data,
                                   const T *y_data, T *out_data, int pre, int n,
                                   int post, Operator op) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  if (tid < total) {
    int idx = tid / post % n;
#if __CUDA_ARCH__ >= 350
    out_data[tid] = op(__ldg(x_data + tid), __ldg(y_data + idx));
#else
    out_data[tid] = op(x_data[tid], y_data[idx]);
#endif
47 48 49 50
  }
}

nvinfer1::Dims ElementWisePlugin::getOutputDimensions(
51
    int index, const nvinfer1::Dims *input_dims, int num_inputs) TRT_NOEXCEPT {
52 53 54 55 56 57 58 59 60 61 62 63
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "There is only one output in TRT elementwise "
                                  "op plugin, but got output index: %d.",
                                  index));
  PADDLE_ENFORCE_EQ(num_inputs, 2, platform::errors::InvalidArgument(
                                       "There are 2 inputs in TRT elementwise "
                                       "op plugin, but got input number: %d.",
                                       num_inputs));
  PADDLE_ENFORCE_NOT_NULL(
      input_dims,
      platform::errors::InvalidArgument(
          "The input dims of TRT elementwise op plugin should not be null."));
64 65 66
  return input_dims[0];
}

67
int ElementWisePlugin::initialize() TRT_NOEXCEPT {
68 69 70 71 72 73 74 75 76
  axis_ = (axis_ == -1) ? dims_x_.nbDims - dims_y_.nbDims : axis_;
  int trimed_nb_dims = dims_y_.nbDims;
  for (; trimed_nb_dims > 0; --trimed_nb_dims) {
    if (dims_y_.d[trimed_nb_dims - 1] != 1) {
      break;
    }
  }
  dims_y_.nbDims = trimed_nb_dims;

77 78 79 80 81 82 83 84 85 86 87 88
  PADDLE_ENFORCE_GE(dims_x_.nbDims, dims_y_.nbDims + axis_,
                    platform::errors::InvalidArgument(
                        "We expect [number of x dims] >= [number of y dims + "
                        "axis] in TRT elementwise op plugin, but got [number "
                        "of x dims] = %d, [number of y dims + axis] = %d.",
                        dims_x_.nbDims, dims_y_.nbDims + axis_));
  PADDLE_ENFORCE_LT(
      axis_, dims_x_.nbDims,
      platform::errors::InvalidArgument("We expect [axis] < [number of x dims] "
                                        "in TRT elementwise op plugin, but got "
                                        "[axis] = %d, [number of x dims] = %d.",
                                        axis_, dims_x_.nbDims));
89 90 91 92 93 94 95 96 97 98

  prev_size_ = 1;
  midd_size_ = 1;
  post_size_ = 1;
  for (int i = 0; i < axis_; ++i) {
    prev_size_ *= dims_x_.d[i];
  }

  for (int i = 0; i < dims_y_.nbDims; ++i) {
    PADDLE_ENFORCE_EQ(dims_x_.d[i + axis_], dims_y_.d[i],
99 100 101
                      platform::errors::InvalidArgument(
                          "Broadcast dimension mismatch. The dims of input Y "
                          "should be a subsequence of X."));
102 103 104 105 106 107 108 109 110
    midd_size_ *= dims_y_.d[i];
  }

  for (int i = axis_ + dims_y_.nbDims; i < dims_x_.nbDims; ++i) {
    post_size_ *= dims_x_.d[i];
  }
  return 0;
}

111
int ElementWisePlugin::enqueue(int batch_size, const void *const *inputs,
112
#if IS_TRT_VERSION_LT(8000)
113
                               void **outputs, void *workspace,
114 115 116
#else
                               void *const *outputs, void *workspace,
#endif
117
                               cudaStream_t stream) TRT_NOEXCEPT {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  const float *x = reinterpret_cast<const float *>(inputs[0]);
  const float *y = reinterpret_cast<const float *>(inputs[1]);
  float *out = reinterpret_cast<float *>(outputs[0]);

  int num = batch_size * prev_size_ * midd_size_ * post_size_;
  int thread = 256;
  int block = (num + thread - 1) / thread;
  if (type_ == "add") {
    elementwise_kernel<<<block, thread, 0, stream>>>(
        num, x, y, out, prev_size_, batch_size * midd_size_, post_size_,
        details::Add<float>());
  } else if (type_ == "mul") {
    elementwise_kernel<<<block, thread, 0, stream>>>(
        num, x, y, out, prev_size_, batch_size * midd_size_, post_size_,
        details::Mul<float>());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The %s type elementwise is not implemented in trt plugin.", type_));
  }

  return cudaGetLastError() != cudaSuccess;
}

// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)

144
int ElementwisePluginDynamic::initialize() TRT_NOEXCEPT { return 0; }
145

146
size_t ElementwisePluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
147 148
  return SerializedSize(type_.c_str()) + SerializedSize(axis_);
}
149

150
void ElementwisePluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
151 152 153
  SerializeValue(&buffer, type_.c_str());
  SerializeValue(&buffer, axis_);
}
154 155 156

nvinfer1::DimsExprs ElementwisePluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
157
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
158 159 160 161 162
  return inputs[0];
}

bool ElementwisePluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
163
    int nb_outputs) TRT_NOEXCEPT {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc &in = in_out[pos];
  if (pos == 0) {
    return (in.type == nvinfer1::DataType::kFLOAT) &&
           (in.format == nvinfer1::TensorFormat::kLINEAR);
  }
  const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType ElementwisePluginDynamic::getOutputDataType(
186 187
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
188 189 190 191 192 193 194 195 196 197 198
  PADDLE_ENFORCE_EQ(index, 0,
                    platform::errors::InvalidArgument(
                        "The Elementwise Plugin only has one input, so the "
                        "index value should be 0, but get %d.",
                        index));
  return input_types[0];
}

int ElementwisePluginDynamic::enqueue(
    const nvinfer1::PluginTensorDesc *input_desc,
    const nvinfer1::PluginTensorDesc *output_desc, const void *const *inputs,
199
    void *const *outputs, void *workspace, cudaStream_t stream) TRT_NOEXCEPT {
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  auto x_dims = input_desc[0].dims;
  auto y_dims = input_desc[1].dims;
  int axis = (axis_ == -1) ? x_dims.nbDims - y_dims.nbDims : axis_;
  int batch_size = x_dims.d[0];

  int prev_size = 1;
  int midd_size = 1;
  int post_size = 1;
  for (int i = 0; i < axis; ++i) {
    prev_size *= x_dims.d[i];
  }

  int trimed_nb_dims = y_dims.nbDims;
  for (; trimed_nb_dims > 0; --trimed_nb_dims) {
    if (y_dims.d[trimed_nb_dims - 1] != 1) {
      break;
    }
  }

  for (int i = 0; i < trimed_nb_dims; ++i) {
    PADDLE_ENFORCE_EQ(x_dims.d[i + axis], y_dims.d[i],
                      platform::errors::InvalidArgument(
                          "Broadcast dimension mismatch found in trt "
                          "elementwise plugin's x and y input."));
    midd_size *= y_dims.d[i];
  }

  for (int i = axis + trimed_nb_dims; i < x_dims.nbDims; ++i) {
    post_size *= x_dims.d[i];
  }

  const float *x = static_cast<const float *>(inputs[0]);
  const float *y = static_cast<const float *>(inputs[1]);

  float *out = static_cast<float *>(outputs[0]);
235

236 237 238
  int num = prev_size * midd_size * post_size;
  int thread = 256;
  int block = (num + thread - 1) / thread;
N
nhzlx 已提交
239
  if (type_ == "add") {
240 241
    elementwise_kernel<<<block, thread, 0, stream>>>(
        num, x, y, out, prev_size, midd_size, post_size, details::Add<float>());
N
nhzlx 已提交
242
  } else if (type_ == "mul") {
243 244
    elementwise_kernel<<<block, thread, 0, stream>>>(
        num, x, y, out, prev_size, midd_size, post_size, details::Mul<float>());
245
  } else {
246 247 248 249
    PADDLE_THROW(platform::errors::Unimplemented(
        "Paddle-TRT only support elementwise operation: {add, mul} currently, "
        "but got %s.",
        type_));
250 251 252 253
  }

  return cudaGetLastError() != cudaSuccess;
}
254
#endif
255 256 257 258 259

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle