sample_logits_op.cc 9.5 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/sample_logits_op.h"
#include "paddle/fluid/operators/math/sample_prob.h"

namespace paddle {
namespace operators {

class SampleLogitsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Logits",
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
             "and K is the class number.");
X
xuezhong 已提交
28 29
    AddInput("Labels",
             "(Tensor) The ground truth which is a 2-D tensor. Labels is a "
X
xuezhong 已提交
30 31
             "Tensor<int64> with shape [N x NT], where NT is the number of"
             "true labels for each example.");
X
xuezhong 已提交
32 33 34 35 36 37 38 39 40
    AddInput("CustomizedSamples",
             "(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
             "NT + S],"
             " where N is the batch size, NT is the number of true labels "
             "and S is the number of negtive sample for each example."
             "The first NT elements of each row should be the same with true "
             "labels, "
             "followed by S custom negtive samples. This tensor"
             "is only used when use_customized_samples is true.")
X
xuezhong 已提交
41 42
        .AsDispensable();
    AddInput(
X
xuezhong 已提交
43 44 45 46 47 48
        "CustomizedProbabilities",
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
        "The tensor has the same shape with CustomSamples,"
        "and each element represents probability of element in CustomSamples. "
        "This "
        "tensor is only used when use_customized_samples is true.")
X
xuezhong 已提交
49
        .AsDispensable();
X
xuezhong 已提交
50 51 52 53 54 55 56
    AddOutput("Samples",
              "(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
              "NT + S]."
              "The outputs value of sampler, including NT true lables and S "
              "negetive samples "
              "for each example. This will be used in"
              "backward calculation.")
X
xuezhong 已提交
57 58 59
        .AsIntermediate();
    AddOutput(
        "Probabilities",
X
xuezhong 已提交
60 61
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
        "The probabilites of sampled positive and negtive labels.")
X
xuezhong 已提交
62 63 64
        .AsIntermediate();
    AddOutput("SampledLogits",
              "(Tensor, default: Tensor<float>), A 2-D tensor with shape"
X
xuezhong 已提交
65 66
              "[N, NT + S]. The outputs value of sampled logits, which will be"
              "used in backward propagation.")
X
xuezhong 已提交
67
        .AsIntermediate();
X
xuezhong 已提交
68
    AddOutput(
X
xuezhong 已提交
69 70 71 72 73
        "SampledLabels",
        "(Tensor, default: Tensor<int64>), A 2-D tensor. The sampled labels"
        "with shape [N, NT]. The tonsor contains hard labels as input to "
        " softmax op, that is 0, 1, …, NT-1 because of the first NT elements"
        " of Sampels are positive lables.");
X
xuezhong 已提交
74
    AddAttr<bool>(
X
xuezhong 已提交
75 76 77 78
        "use_customized_samples",
        "An indicator whether to use customized samples with probabilities, if "
        "True"
        "the operator will use customized samples and customized probabilities"
X
xuezhong 已提交
79 80 81 82 83 84
        "otherwise, the operator will generate them by itself.")
        .SetDefault(false);
    AddAttr<bool>(
        "uniq",
        "An indicator whether to sample non-repetitive negtive labels, if True"
        "the operator will sample negtive labels without replacement."
X
xuezhong 已提交
85
        "Otherwise, the operator will sample negtive labels with replacement.")
X
xuezhong 已提交
86
        .SetDefault(true);
X
xuezhong 已提交
87 88 89 90 91 92 93 94 95 96
    AddAttr<bool>(
        "remove_accidental_hits",
        "An indicator whether to remove accidental hits when samples hits true"
        "labels, the removal is implemented by subtracting the corresponding"
        "logits by float_max to subpress their softmax to be zero.")
        .SetDefault(true);
    AddAttr<int>("num_samples", "The number of negative samples.");
    AddAttr<int>("seed", "Random seed for generating samples").SetDefault(0);

    AddComment(R"DOC(
X
xuezhong 已提交
97 98
  """
  Computes sampled output training logits and labels suitable for implementing
X
xuezhong 已提交
99
  sampled softmax.        
X
xuezhong 已提交
100
  """
X
xuezhong 已提交
101 102 103 104 105 106 107 108 109 110 111 112

)DOC");
  }
};

class SampleLogitsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
X
xuezhong 已提交
113 114
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should be not null.");
X
xuezhong 已提交
115 116 117 118 119 120 121

    PADDLE_ENFORCE(ctx->HasOutput("Samples"),
                   "Output(Samples) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Probabilities"),
                   "Output(Probabilities) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("SampledLogits"),
                   "Output(SampledLogits) should be not null.");
X
xuezhong 已提交
122 123
    PADDLE_ENFORCE(ctx->HasOutput("SampledLabels"),
                   "Output(SampledLabels) should be not null.");
X
xuezhong 已提交
124 125

    auto logits_dims = ctx->GetInputDim("Logits");
X
xuezhong 已提交
126
    auto labels_dims = ctx->GetInputDim("Labels");
X
xuezhong 已提交
127 128 129 130 131 132 133 134 135 136 137 138

    PADDLE_ENFORCE_EQ(
        logits_dims.size(), 2UL,
        "The logits of softmax_with_cross_entropy should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
                      "The labels should be a 2-D tensor.");

    const int num_samples = ctx->Attrs().Get<int>("num_samples");
    const int num_sampled_classes = labels_dims[1] + num_samples;
    ctx->SetOutputDim("Samples", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("Probabilities", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("SampledLogits", {logits_dims[0], num_sampled_classes});
X
xuezhong 已提交
139
    ctx->SetOutputDim("SampledLabels", {logits_dims[0], labels_dims[1]});
X
xuezhong 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Logits"));
    framework::OpKernelType kt =
        framework::OpKernelType(data_type, ctx.device_context());
    return kt;
  }
};

// UNDERSTAND: InferShape for Grad
class SampleLogitsOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should not be null.");
X
xuezhong 已提交
160 161
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should be not null.");
X
xuezhong 已提交
162 163 164 165 166 167 168 169 170 171
    PADDLE_ENFORCE(ctx->HasInput("Samples"),
                   "Input(Samples) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("SampledLogits"),
                   "Input(SampledLogits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("SampledLogits")),
                   "Input(SampledLogits@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto logit_dims = ctx->GetInputDim("Logits");
X
xuezhong 已提交
172
    auto label_dims = ctx->GetInputDim("Labels");
X
xuezhong 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "The label should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(logit_dims.size(), 2UL,
                      "The logits should be a 2-D tensor.");

    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Logits"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(
        ctx.InputVar(framework::GradVarName("SampledLogits")));
    framework::OpKernelType kt =
        framework::OpKernelType(data_type, ctx.device_context());
    return kt;
  }
};

// UNDERSTAND: what's the rule for making a GradMaker TODO
class SampleLogitsGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
    grad_op->SetType("sample_logits_grad");
    grad_op->SetInput("Logits", Input("Logits"));
X
xuezhong 已提交
203
    grad_op->SetInput("Labels", Input("Labels"));
X
xuezhong 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    grad_op->SetInput("Samples", Output("Samples"));
    grad_op->SetInput("SampledLogits", Output("SampledLogits"));
    grad_op->SetInput(framework::GradVarName("SampledLogits"),
                      OutputGrad("SampledLogits"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(sample_logits, ops::SampleLogitsOp, ops::SampleLogitsOpMaker,
                  ops::SampleLogitsGradMaker);
REGISTER_OPERATOR(sample_logits_grad, ops::SampleLogitsOpGrad);
REGISTER_OP_CPU_KERNEL(sample_logits, ops::SampleLogitsKernel<float>,
                       ops::SampleLogitsKernel<double>);
REGISTER_OP_CPU_KERNEL(sample_logits_grad, ops::SampleLogitsGradKernel<float>,
                       ops::SampleLogitsGradKernel<double>);