custom_conj_op.cc 2.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WIdata_tHOUdata_t WARRANdata_tIES OR CONDIdata_tIONS OF ANY KIND, either
// express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>

#include "paddle/extension.h"

#define CHECK_INPUT(x) \
  PD_CHECK(x.place() == paddle::PlaceType::kCPU, #x " must be a CPU Tensor.")

template <typename data_t>
using EnableComplex = typename std::enable_if<
    std::is_same<data_t, paddle::complex64>::value ||
    std::is_same<data_t, paddle::complex128>::value>::type;

template <typename data_t>
using DisableComplex = typename std::enable_if<
    !std::is_same<data_t, paddle::complex64>::value &&
    !std::is_same<data_t, paddle::complex128>::value>::type;

template <typename data_t, typename Enable = void>
struct ConjFunctor;

template <typename data_t>
struct ConjFunctor<data_t, EnableComplex<data_t>> {
  ConjFunctor(const data_t* input, int64_t numel, data_t* output)
      : input_(input), numel_(numel), output_(output) {}

  void operator()(size_t idx) const {
    output_[idx] = data_t(input_[idx].real, -input_[idx].imag);
  }

  const data_t* input_;
  int64_t numel_;
  data_t* output_;
};

template <typename data_t>
struct ConjFunctor<data_t, DisableComplex<data_t>> {
  ConjFunctor(const data_t* input, int64_t numel, data_t* output)
      : input_(input), numel_(numel), output_(output) {}

  void operator()(size_t idx) const { output_[idx] = input_[idx]; }

  const data_t* input_;
  int64_t numel_;
  data_t* output_;
};

template <typename data_t>
void ConjCPUKernel(const data_t* x_data, int64_t numel, data_t* out_data) {
  ConjFunctor<data_t> conj(x_data, numel, out_data);
  for (int64_t i = 0; i < numel; ++i) {
    conj(i);
  }
}

std::vector<paddle::Tensor> ConjFunction(const paddle::Tensor& x) {
  CHECK_INPUT(x);

74
  paddle::Tensor out(x.place(), x.shape());
75 76 77 78

  PD_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
      x.type(), "ConjCPUKernel", ([&] {
        ConjCPUKernel<data_t>(
79 80 81
            x.data<data_t>(),
            x.size(),
            out.mutable_data<data_t>(paddle::PlaceType::kCPU));
82 83 84 85 86 87 88 89 90 91 92 93 94 95
      }));

  return {out};
}

PD_BUILD_OP(custom_conj)
    .Inputs({"X"})
    .Outputs({"Out"})
    .SetKernelFn(PD_KERNEL(ConjFunction));

PD_BUILD_GRAD_OP(custom_conj)
    .Inputs({paddle::Grad("Out")})
    .Outputs({paddle::Grad("X")})
    .SetKernelFn(PD_KERNEL(ConjFunction));