test_gradient_clip.py 5.7 KB
Newer Older
C
chengduozh 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid

BATCH_SIZE = 128
CLIP = 1


def bow_net(data,
            label,
            dict_dim,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=True, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestGradientClip(unittest.TestCase):
    def setUp(self):
        self.word_dict = paddle.dataset.imdb.word_dict()
        self.BATCH_SIZE = 2
        self.train_data = paddle.batch(
            paddle.dataset.imdb.train(self.word_dict),
            batch_size=self.BATCH_SIZE)

    def get_places(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

    def check_operators(self, place):
        prog = fluid.framework.Program()
        startup_program = fluid.framework.Program()
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')

            hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
            hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')

            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(cost)

        prog_clip = prog.clone()

        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

        with fluid.program_guard(main_program=prog_clip):
            fluid.clip.set_gradient_clip(
                fluid.clip.GradientClipByGlobalNorm(clip_norm=CLIP))
            p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=BATCH_SIZE)

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

        count = 0
        for data in train_reader():
            count += 1
            if count > 5:
                break
            out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
            out_clip = exe.run(prog_clip,
                               feed=feeder.feed(data),
                               fetch_list=grad_clip_list)
            global_norm = 0
            for v in out[1:]:
                global_norm += np.sum(np.power(v, 2))
            global_norm = np.sqrt(global_norm)

            global_norm_clip = 0
            for v in out_clip[1:]:
                global_norm_clip += np.sum(np.power(v, 2))
            global_norm_clip = np.sqrt(global_norm_clip)

            assert np.isclose(
                a=global_norm_clip, b=np.minimum(global_norm, CLIP), rtol=5e-3)

    def check_sparse_gradient_clip(self, place):
        prog = fluid.framework.Program()
        startup_program = fluid.framework.Program()
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            cost = bow_net(data, label, len(self.word_dict))

            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0))

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
            sgd_optimizer.minimize(cost)

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
        self.assertEqual((1, ), val.shape)
        print(val)
        self.assertFalse(np.isnan(val))

    def test_operators(self):
        self.check_operators(core.CPUPlace())

    def test_sparse_gradient_clip(self):
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)


if __name__ == '__main__':
    unittest.main()