executor.cc 18.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
Y
Yang Yang 已提交
17

Y
Yi Wang 已提交
18 19 20 21 22
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
23
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
24
#include "paddle/fluid/framework/variable_helper.h"
W
Wu Yi 已提交
25
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
27
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
28

29
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
30
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
31 32
#endif

D
dzhwinter 已提交
33
DECLARE_bool(benchmark);
34
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
B
baojun-nervana 已提交
35
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
36 37 38

namespace paddle {
namespace framework {
X
Xin Pan 已提交
39 40 41 42 43
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
44

S
fix bug  
sneaxiy 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
    const BlockDesc& block, const std::vector<std::string>& skip_var_list) {
  std::unordered_map<std::string, size_t> ref_cnts;
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  auto update_ref_cnts = [&](OpDesc* op_desc, const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        if (skip_vars.count(name)) continue;
        auto* var_desc = block.FindVar(name);
        if (var_desc == nullptr || var_desc->Persistable()) continue;
        auto type = var_desc->Proto()->type().type();
        if (type != proto::VarType::LOD_TENSOR &&
            type != proto::VarType::SELECTED_ROWS &&
            type != proto::VarType::LOD_TENSOR_ARRAY) {
          continue;
        }
S
sneaxiy 已提交
63
        ++ref_cnts[name];
S
fix bug  
sneaxiy 已提交
64 65 66 67 68 69 70 71 72 73 74
      }
    }
  };

  for (auto op_desc : block.AllOps()) {
    update_ref_cnts(op_desc, op_desc->Inputs());
    update_ref_cnts(op_desc, op_desc->Outputs());
  }
  return ref_cnts;
}

Q
Qiao Longfei 已提交
75
ExecutorPrepareContext::ExecutorPrepareContext(
S
fix bug  
sneaxiy 已提交
76 77
    const framework::ProgramDesc& prog, size_t block_id,
    const std::vector<std::string>& skip_ref_cnt_vars)
S
sneaxiy 已提交
78 79
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
S
sneaxiy 已提交
80 81
    global_ref_cnts_ = GetNonPersistableReferenceCounts(prog.Block(block_id),
                                                        skip_ref_cnt_vars);
S
sneaxiy 已提交
82 83
  }
}
Y
Yu Yang 已提交
84

Q
Qiao Longfei 已提交
85
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
86
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
87
}
Y
Yu Yang 已提交
88

S
fix bug  
sneaxiy 已提交
89
static void DeleteUnusedTensors(
S
sneaxiy 已提交
90
    const Scope& scope, const OperatorBase* op, GarbageCollector* gc,
S
fix bug  
sneaxiy 已提交
91
    std::unordered_map<std::string, size_t>* ref_cnts) {
S
sneaxiy 已提交
92
  std::deque<std::shared_ptr<memory::Allocation>> garbages;
S
sneaxiy 已提交
93 94 95 96 97 98

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
S
sneaxiy 已提交
99 100 101 102
        if (--(it->second) != 0) {
          continue;
        }
        auto* var = scope.FindVar(name);
S
sneaxiy 已提交
103
        if (var == nullptr) {
S
sneaxiy 已提交
104 105 106 107 108 109
          continue;
        }

        VLOG(2) << "Erase variable " << name;
        if (var->IsType<LoDTensor>()) {
          garbages.emplace_back(
S
sneaxiy 已提交
110 111 112 113 114
              var->GetMutable<LoDTensor>()->MoveMemoryHolder());
        } else if (var->IsType<SelectedRows>()) {
          garbages.emplace_back(var->GetMutable<SelectedRows>()
                                    ->mutable_value()
                                    ->MoveMemoryHolder());
S
sneaxiy 已提交
115 116 117
        } else if (var->IsType<LoDTensorArray>()) {
          auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
          for (auto& t : *lod_tensor_arr) {
S
sneaxiy 已提交
118
            garbages.emplace_back(t.MoveMemoryHolder());
S
sneaxiy 已提交
119
          }
S
sneaxiy 已提交
120 121
        } else {
          PADDLE_THROW("Type %s of %s is not supported eager deletion",
S
sneaxiy 已提交
122
                       framework::ToTypeName(var->Type()), name);
S
sneaxiy 已提交
123 124 125 126 127 128 129 130
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

S
sneaxiy 已提交
131 132
  if (!garbages.empty()) {
    gc->Add(std::move(garbages));
S
sneaxiy 已提交
133 134 135
  }
}

D
dzhwinter 已提交
136
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
137

Y
Yancey1989 已提交
138
void Executor::Close() {
W
Wu Yi 已提交
139
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
140 141
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
142 143 144
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
145
#endif
Y
Yancey1989 已提交
146
}
W
Wu Yi 已提交
147

L
Liu Yiqun 已提交
148 149 150
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
151 152 153 154 155 156 157 158 159 160 161 162 163 164

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
165
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
166 167
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
168 169
      } else {
        auto* ptr = scope->Var(var->Name());
170
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
171 172
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
173 174 175 176 177
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
178
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
179 180
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
181 182 183 184
    }
  }
}

Y
Yu Yang 已提交
185
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
186
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
187
  platform::RecordBlock b(block_id);
188
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
B
baojun 已提交
189 190 191
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) operators::NgraphEngine::EnableNgraph(pdesc);
#endif
Q
Qiao Longfei 已提交
192 193
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
194 195
}

196 197 198 199 200 201 202
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
203
    const BlockDesc& block,
L
Liu Yiqun 已提交
204
    const std::map<std::string, const LoDTensor*>& feed_targets,
205 206
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
207
  for (auto* op : block.AllOps()) {
208 209
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
210
      // The input variable's name of feed_op should be feed_holder_name.
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

226
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
227
      // When feed operator are present, so should be feed_holder.
228 229 230 231 232 233 234
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
235 236 237 238 239 240 241 242 243 244 245 246
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
247 248
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
249 250
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
251
  for (auto* op : block.AllOps()) {
252 253
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
254
      // The output variable's name of fetch_op should be fetch_holder_name.
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

270
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
271
      // When fetch operator are present, so should be fetch_holder.
272 273 274 275 276 277 278
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
279 280 281 282 283 284
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
285 286
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
287 288
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
289
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
290
  platform::RecordBlock b(kProgramId);
291
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
292
  bool has_feed_ops =
293
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
294
  bool has_fetch_ops =
295
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
296 297

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
298
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
299
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
300 301
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
302
  }
303 304
  auto* global_block = copy_program->MutableBlock(0);

305
  if (!has_feed_ops) {
306 307
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
308
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
309 310 311
    feed_holder->SetPersistable(true);

    int i = 0;
312
    for (auto& feed_target : (*feed_targets)) {
313
      std::string var_name = feed_target.first;
M
minqiyang 已提交
314
      VLOG(3) << "feed target's name: " << var_name;
315 316 317 318 319 320 321 322 323 324 325 326 327

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

328
  if (!has_fetch_ops) {
329 330
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
331
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
332 333 334
    fetch_holder->SetPersistable(true);

    int i = 0;
335
    for (auto& fetch_target : (*fetch_targets)) {
336
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
337
      VLOG(3) << "fetch target's name: " << var_name;
338 339 340 341 342 343 344 345 346 347 348 349 350

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

351
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
352 353 354
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
355 356
}

Q
Qiao Longfei 已提交
357
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
358 359
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars) {
Q
Qiyang Min 已提交
360
  std::unique_ptr<ExecutorPrepareContext> ctx(
S
fix bug  
sneaxiy 已提交
361
      new ExecutorPrepareContext(program, block_id, skip_ref_cnt_vars));
Y
Yu Yang 已提交
362 363 364 365 366
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
Q
Qiyang Min 已提交
367
  return ctx;
Y
Yu Yang 已提交
368 369
}

T
refine  
typhoonzero 已提交
370
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
371 372 373 374 375 376
    const ProgramDesc& program, const std::vector<int>& block_ids,
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars) {
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
377
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
378
  size_t idx = 0;
T
typhoonzero 已提交
379
  for (auto& bid : block_ids) {
S
fix bug  
sneaxiy 已提交
380 381 382 383 384 385
    ExecutorPrepareContext* ctx;
    if (skip_ref_cnt_vars.empty()) {
      ctx = new ExecutorPrepareContext(program, bid);
    } else {
      ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx]);
    }
T
typhoonzero 已提交
386 387 388 389 390 391
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
392
    ++idx;
T
typhoonzero 已提交
393 394 395 396
  }
  return result;
}

Y
Yu Yang 已提交
397
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
398 399
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
400
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
401 402 403 404
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
405 406
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
407
  }
Y
Yu Yang 已提交
408

S
sneaxiy 已提交
409
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
410
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
411 412
  // skip while_op and while_grad_op temporarily
  if (max_memory_size >= 0 && !keep_kids) {
S
sneaxiy 已提交
413
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
414 415
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
416
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
417
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
418 419
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
420
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
421 422 423
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
424
#endif
S
sneaxiy 已提交
425 426
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
427 428 429 430 431
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
432
  for (auto& op : ctx->ops_) {
433
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
434

S
fix bug  
sneaxiy 已提交
435
    if (gc) {
S
sneaxiy 已提交
436
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
S
sneaxiy 已提交
437
                          &(ctx->runtime_ref_cnts_));
S
sneaxiy 已提交
438
    }
Y
Yu Yang 已提交
439
  }
S
sneaxiy 已提交
440

S
fix bug  
sneaxiy 已提交
441
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
442

Q
qiaolongfei 已提交
443
  if (local_scope != scope) {
Y
Yu Yang 已提交
444
    scope->DeleteScope(local_scope);
445
  } else {
Q
qiaolongfei 已提交
446 447 448 449 450
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
451 452
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
453 454
      scope->DropKids();
    }
Y
Yu Yang 已提交
455 456 457
  }
}

458 459
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
460
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
461 462 463
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
464 465
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

466
  PADDLE_ENFORCE(
467
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
468 469
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
470
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
471 472
      "Program in the prepared context should has fetch_ops.");

473 474 475 476 477
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
478 479
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
480 481 482
    }
  }

W
Wu Yi 已提交
483
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
484 485 486 487 488 489

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
490
      *(*fetch_targets)[fetch_target_name] =
491 492 493 494 495
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

496 497
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
498
  VLOG(3) << "use_mkldnn=True";
499 500 501 502 503 504 505 506
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
507 508 509
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
510 511
#endif
}
Q
qijun 已提交
512 513
}  // namespace framework
}  // namespace paddle